Spaces:
Paused
Paused
Create app-backup1.py
Browse files- app-backup1.py +1028 -0
app-backup1.py
ADDED
|
@@ -0,0 +1,1028 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import json
|
| 4 |
+
import logging
|
| 5 |
+
import torch
|
| 6 |
+
from PIL import Image
|
| 7 |
+
import spaces
|
| 8 |
+
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL, AutoPipelineForImage2Image
|
| 9 |
+
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
|
| 10 |
+
from diffusers.utils import load_image
|
| 11 |
+
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
|
| 12 |
+
import copy
|
| 13 |
+
import random
|
| 14 |
+
import time
|
| 15 |
+
import requests
|
| 16 |
+
import pandas as pd
|
| 17 |
+
from transformers import pipeline
|
| 18 |
+
from gradio_imageslider import ImageSlider
|
| 19 |
+
import numpy as np
|
| 20 |
+
import warnings
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
huggingface_token = os.getenv("HF_TOKEN")
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en", device="cpu")
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
#Load prompts for randomization
|
| 31 |
+
df = pd.read_csv('prompts.csv', header=None)
|
| 32 |
+
prompt_values = df.values.flatten()
|
| 33 |
+
|
| 34 |
+
# Load LoRAs from JSON file
|
| 35 |
+
with open('loras.json', 'r') as f:
|
| 36 |
+
loras = json.load(f)
|
| 37 |
+
|
| 38 |
+
# Initialize the base model
|
| 39 |
+
dtype = torch.bfloat16
|
| 40 |
+
|
| 41 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 42 |
+
|
| 43 |
+
# ๊ณตํต FLUX ๋ชจ๋ธ ๋ก๋
|
| 44 |
+
base_model = "black-forest-labs/FLUX.1-dev"
|
| 45 |
+
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype).to(device)
|
| 46 |
+
|
| 47 |
+
# LoRA๋ฅผ ์ํ ์ค์
|
| 48 |
+
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
| 49 |
+
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
|
| 50 |
+
|
| 51 |
+
# Image-to-Image ํ์ดํ๋ผ์ธ ์ค์
|
| 52 |
+
pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
|
| 53 |
+
base_model,
|
| 54 |
+
vae=good_vae,
|
| 55 |
+
transformer=pipe.transformer,
|
| 56 |
+
text_encoder=pipe.text_encoder,
|
| 57 |
+
tokenizer=pipe.tokenizer,
|
| 58 |
+
text_encoder_2=pipe.text_encoder_2,
|
| 59 |
+
tokenizer_2=pipe.tokenizer_2,
|
| 60 |
+
torch_dtype=dtype
|
| 61 |
+
).to(device)
|
| 62 |
+
|
| 63 |
+
MAX_SEED = 2**32 - 1
|
| 64 |
+
MAX_PIXEL_BUDGET = 1024 * 1024
|
| 65 |
+
|
| 66 |
+
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
|
| 67 |
+
|
| 68 |
+
class calculateDuration:
|
| 69 |
+
def __init__(self, activity_name=""):
|
| 70 |
+
self.activity_name = activity_name
|
| 71 |
+
|
| 72 |
+
def __enter__(self):
|
| 73 |
+
self.start_time = time.time()
|
| 74 |
+
return self
|
| 75 |
+
|
| 76 |
+
def __exit__(self, exc_type, exc_value, traceback):
|
| 77 |
+
self.end_time = time.time()
|
| 78 |
+
self.elapsed_time = self.end_time - self.start_time
|
| 79 |
+
if self.activity_name:
|
| 80 |
+
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
|
| 81 |
+
else:
|
| 82 |
+
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
|
| 83 |
+
|
| 84 |
+
def download_file(url, directory=None):
|
| 85 |
+
if directory is None:
|
| 86 |
+
directory = os.getcwd() # Use current working directory if not specified
|
| 87 |
+
|
| 88 |
+
# Get the filename from the URL
|
| 89 |
+
filename = url.split('/')[-1]
|
| 90 |
+
|
| 91 |
+
# Full path for the downloaded file
|
| 92 |
+
filepath = os.path.join(directory, filename)
|
| 93 |
+
|
| 94 |
+
# Download the file
|
| 95 |
+
response = requests.get(url)
|
| 96 |
+
response.raise_for_status() # Raise an exception for bad status codes
|
| 97 |
+
|
| 98 |
+
# Write the content to the file
|
| 99 |
+
with open(filepath, 'wb') as file:
|
| 100 |
+
file.write(response.content)
|
| 101 |
+
|
| 102 |
+
return filepath
|
| 103 |
+
|
| 104 |
+
def update_selection(evt: gr.SelectData, selected_indices, loras_state, width, height):
|
| 105 |
+
selected_index = evt.index
|
| 106 |
+
selected_indices = selected_indices or []
|
| 107 |
+
if selected_index in selected_indices:
|
| 108 |
+
selected_indices.remove(selected_index)
|
| 109 |
+
else:
|
| 110 |
+
if len(selected_indices) < 3:
|
| 111 |
+
selected_indices.append(selected_index)
|
| 112 |
+
else:
|
| 113 |
+
gr.Warning("You can select up to 3 LoRAs, remove one to select a new one.")
|
| 114 |
+
return gr.update(), gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), gr.update(), width, height, gr.update(), gr.update(), gr.update()
|
| 115 |
+
|
| 116 |
+
selected_info_1 = "Select LoRA 1"
|
| 117 |
+
selected_info_2 = "Select LoRA 2"
|
| 118 |
+
selected_info_3 = "Select LoRA 3"
|
| 119 |
+
|
| 120 |
+
lora_scale_1 = 1.15
|
| 121 |
+
lora_scale_2 = 1.15
|
| 122 |
+
lora_scale_3 = 1.15
|
| 123 |
+
lora_image_1 = None
|
| 124 |
+
lora_image_2 = None
|
| 125 |
+
lora_image_3 = None
|
| 126 |
+
|
| 127 |
+
if len(selected_indices) >= 1:
|
| 128 |
+
lora1 = loras_state[selected_indices[0]]
|
| 129 |
+
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) โจ"
|
| 130 |
+
lora_image_1 = lora1['image']
|
| 131 |
+
if len(selected_indices) >= 2:
|
| 132 |
+
lora2 = loras_state[selected_indices[1]]
|
| 133 |
+
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) โจ"
|
| 134 |
+
lora_image_2 = lora2['image']
|
| 135 |
+
if len(selected_indices) >= 3:
|
| 136 |
+
lora3 = loras_state[selected_indices[2]]
|
| 137 |
+
selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}](https://huggingface.co/{lora3['repo']}) โจ"
|
| 138 |
+
lora_image_3 = lora3['image']
|
| 139 |
+
|
| 140 |
+
if selected_indices:
|
| 141 |
+
last_selected_lora = loras_state[selected_indices[-1]]
|
| 142 |
+
new_placeholder = f"Type a prompt for {last_selected_lora['title']}"
|
| 143 |
+
else:
|
| 144 |
+
new_placeholder = "Type a prompt after selecting a LoRA"
|
| 145 |
+
|
| 146 |
+
return gr.update(placeholder=new_placeholder), selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, width, height, lora_image_1, lora_image_2, lora_image_3
|
| 147 |
+
|
| 148 |
+
def remove_lora(selected_indices, loras_state, index_to_remove):
|
| 149 |
+
if len(selected_indices) > index_to_remove:
|
| 150 |
+
selected_indices.pop(index_to_remove)
|
| 151 |
+
|
| 152 |
+
selected_info_1 = "Select LoRA 1"
|
| 153 |
+
selected_info_2 = "Select LoRA 2"
|
| 154 |
+
selected_info_3 = "Select LoRA 3"
|
| 155 |
+
lora_scale_1 = 1.15
|
| 156 |
+
lora_scale_2 = 1.15
|
| 157 |
+
lora_scale_3 = 1.15
|
| 158 |
+
lora_image_1 = None
|
| 159 |
+
lora_image_2 = None
|
| 160 |
+
lora_image_3 = None
|
| 161 |
+
|
| 162 |
+
for i, idx in enumerate(selected_indices):
|
| 163 |
+
lora = loras_state[idx]
|
| 164 |
+
if i == 0:
|
| 165 |
+
selected_info_1 = f"### LoRA 1 Selected: [{lora['title']}]({lora['repo']}) โจ"
|
| 166 |
+
lora_image_1 = lora['image']
|
| 167 |
+
elif i == 1:
|
| 168 |
+
selected_info_2 = f"### LoRA 2 Selected: [{lora['title']}]({lora['repo']}) โจ"
|
| 169 |
+
lora_image_2 = lora['image']
|
| 170 |
+
elif i == 2:
|
| 171 |
+
selected_info_3 = f"### LoRA 3 Selected: [{lora['title']}]({lora['repo']}) โจ"
|
| 172 |
+
lora_image_3 = lora['image']
|
| 173 |
+
|
| 174 |
+
return selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_image_1, lora_image_2, lora_image_3
|
| 175 |
+
|
| 176 |
+
def remove_lora_1(selected_indices, loras_state):
|
| 177 |
+
return remove_lora(selected_indices, loras_state, 0)
|
| 178 |
+
|
| 179 |
+
def remove_lora_2(selected_indices, loras_state):
|
| 180 |
+
return remove_lora(selected_indices, loras_state, 1)
|
| 181 |
+
|
| 182 |
+
def remove_lora_3(selected_indices, loras_state):
|
| 183 |
+
return remove_lora(selected_indices, loras_state, 2)
|
| 184 |
+
|
| 185 |
+
def randomize_loras(selected_indices, loras_state):
|
| 186 |
+
try:
|
| 187 |
+
if len(loras_state) < 3:
|
| 188 |
+
raise gr.Error("Not enough LoRAs to randomize.")
|
| 189 |
+
selected_indices = random.sample(range(len(loras_state)), 3)
|
| 190 |
+
lora1 = loras_state[selected_indices[0]]
|
| 191 |
+
lora2 = loras_state[selected_indices[1]]
|
| 192 |
+
lora3 = loras_state[selected_indices[2]]
|
| 193 |
+
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) โจ"
|
| 194 |
+
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) โจ"
|
| 195 |
+
selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}](https://huggingface.co/{lora3['repo']}) โจ"
|
| 196 |
+
lora_scale_1 = 1.15
|
| 197 |
+
lora_scale_2 = 1.15
|
| 198 |
+
lora_scale_3 = 1.15
|
| 199 |
+
lora_image_1 = lora1.get('image', 'path/to/default/image.png')
|
| 200 |
+
lora_image_2 = lora2.get('image', 'path/to/default/image.png')
|
| 201 |
+
lora_image_3 = lora3.get('image', 'path/to/default/image.png')
|
| 202 |
+
random_prompt = random.choice(prompt_values)
|
| 203 |
+
return selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_image_1, lora_image_2, lora_image_3, random_prompt
|
| 204 |
+
except Exception as e:
|
| 205 |
+
print(f"Error in randomize_loras: {str(e)}")
|
| 206 |
+
return "Error", "Error", "Error", [], 1.15, 1.15, 1.15, 'path/to/default/image.png', 'path/to/default/image.png', 'path/to/default/image.png', ""
|
| 207 |
+
|
| 208 |
+
def add_custom_lora(custom_lora, selected_indices, current_loras):
|
| 209 |
+
if custom_lora:
|
| 210 |
+
try:
|
| 211 |
+
title, repo, path, trigger_word, image = check_custom_model(custom_lora)
|
| 212 |
+
print(f"Loaded custom LoRA: {repo}")
|
| 213 |
+
existing_item_index = next((index for (index, item) in enumerate(current_loras) if item['repo'] == repo), None)
|
| 214 |
+
if existing_item_index is None:
|
| 215 |
+
if repo.endswith(".safetensors") and repo.startswith("http"):
|
| 216 |
+
repo = download_file(repo)
|
| 217 |
+
new_item = {
|
| 218 |
+
"image": image if image else "/home/user/app/custom.png",
|
| 219 |
+
"title": title,
|
| 220 |
+
"repo": repo,
|
| 221 |
+
"weights": path,
|
| 222 |
+
"trigger_word": trigger_word
|
| 223 |
+
}
|
| 224 |
+
print(f"New LoRA: {new_item}")
|
| 225 |
+
existing_item_index = len(current_loras)
|
| 226 |
+
current_loras.append(new_item)
|
| 227 |
+
|
| 228 |
+
# Update gallery
|
| 229 |
+
gallery_items = [(item["image"], item["title"]) for item in current_loras]
|
| 230 |
+
# Update selected_indices if there's room
|
| 231 |
+
if len(selected_indices) < 3:
|
| 232 |
+
selected_indices.append(existing_item_index)
|
| 233 |
+
else:
|
| 234 |
+
gr.Warning("You can select up to 3 LoRAs, remove one to select a new one.")
|
| 235 |
+
|
| 236 |
+
# Update selected_info and images
|
| 237 |
+
selected_info_1 = "Select a LoRA 1"
|
| 238 |
+
selected_info_2 = "Select a LoRA 2"
|
| 239 |
+
selected_info_3 = "Select a LoRA 3"
|
| 240 |
+
lora_scale_1 = 1.15
|
| 241 |
+
lora_scale_2 = 1.15
|
| 242 |
+
lora_scale_3 = 1.15
|
| 243 |
+
lora_image_1 = None
|
| 244 |
+
lora_image_2 = None
|
| 245 |
+
lora_image_3 = None
|
| 246 |
+
if len(selected_indices) >= 1:
|
| 247 |
+
lora1 = current_loras[selected_indices[0]]
|
| 248 |
+
selected_info_1 = f"### LoRA 1 Selected: {lora1['title']} โจ"
|
| 249 |
+
lora_image_1 = lora1['image'] if lora1['image'] else None
|
| 250 |
+
if len(selected_indices) >= 2:
|
| 251 |
+
lora2 = current_loras[selected_indices[1]]
|
| 252 |
+
selected_info_2 = f"### LoRA 2 Selected: {lora2['title']} โจ"
|
| 253 |
+
lora_image_2 = lora2['image'] if lora2['image'] else None
|
| 254 |
+
if len(selected_indices) >= 3:
|
| 255 |
+
lora3 = current_loras[selected_indices[2]]
|
| 256 |
+
selected_info_3 = f"### LoRA 3 Selected: {lora3['title']} โจ"
|
| 257 |
+
lora_image_3 = lora3['image'] if lora3['image'] else None
|
| 258 |
+
print("Finished adding custom LoRA")
|
| 259 |
+
return (
|
| 260 |
+
current_loras,
|
| 261 |
+
gr.update(value=gallery_items),
|
| 262 |
+
selected_info_1,
|
| 263 |
+
selected_info_2,
|
| 264 |
+
selected_info_3,
|
| 265 |
+
selected_indices,
|
| 266 |
+
lora_scale_1,
|
| 267 |
+
lora_scale_2,
|
| 268 |
+
lora_scale_3,
|
| 269 |
+
lora_image_1,
|
| 270 |
+
lora_image_2,
|
| 271 |
+
lora_image_3
|
| 272 |
+
)
|
| 273 |
+
except Exception as e:
|
| 274 |
+
print(e)
|
| 275 |
+
gr.Warning(str(e))
|
| 276 |
+
return current_loras, gr.update(), gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update()
|
| 277 |
+
else:
|
| 278 |
+
return current_loras, gr.update(), gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update()
|
| 279 |
+
|
| 280 |
+
def remove_custom_lora(selected_indices, current_loras):
|
| 281 |
+
if current_loras:
|
| 282 |
+
custom_lora_repo = current_loras[-1]['repo']
|
| 283 |
+
# Remove from loras list
|
| 284 |
+
current_loras = current_loras[:-1]
|
| 285 |
+
# Remove from selected_indices if selected
|
| 286 |
+
custom_lora_index = len(current_loras)
|
| 287 |
+
if custom_lora_index in selected_indices:
|
| 288 |
+
selected_indices.remove(custom_lora_index)
|
| 289 |
+
# Update gallery
|
| 290 |
+
gallery_items = [(item["image"], item["title"]) for item in current_loras]
|
| 291 |
+
# Update selected_info and images
|
| 292 |
+
selected_info_1 = "Select a LoRA 1"
|
| 293 |
+
selected_info_2 = "Select a LoRA 2"
|
| 294 |
+
selected_info_3 = "Select a LoRA 3"
|
| 295 |
+
lora_scale_1 = 1.15
|
| 296 |
+
lora_scale_2 = 1.15
|
| 297 |
+
lora_scale_3 = 1.15
|
| 298 |
+
lora_image_1 = None
|
| 299 |
+
lora_image_2 = None
|
| 300 |
+
lora_image_3 = None
|
| 301 |
+
if len(selected_indices) >= 1:
|
| 302 |
+
lora1 = current_loras[selected_indices[0]]
|
| 303 |
+
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}]({lora1['repo']}) โจ"
|
| 304 |
+
lora_image_1 = lora1['image']
|
| 305 |
+
if len(selected_indices) >= 2:
|
| 306 |
+
lora2 = current_loras[selected_indices[1]]
|
| 307 |
+
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}]({lora2['repo']}) โจ"
|
| 308 |
+
lora_image_2 = lora2['image']
|
| 309 |
+
if len(selected_indices) >= 3:
|
| 310 |
+
lora3 = current_loras[selected_indices[2]]
|
| 311 |
+
selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}]({lora3['repo']}) โจ"
|
| 312 |
+
lora_image_3 = lora3['image']
|
| 313 |
+
return (
|
| 314 |
+
current_loras,
|
| 315 |
+
gr.update(value=gallery_items),
|
| 316 |
+
selected_info_1,
|
| 317 |
+
selected_info_2,
|
| 318 |
+
selected_info_3,
|
| 319 |
+
selected_indices,
|
| 320 |
+
lora_scale_1,
|
| 321 |
+
lora_scale_2,
|
| 322 |
+
lora_scale_3,
|
| 323 |
+
lora_image_1,
|
| 324 |
+
lora_image_2,
|
| 325 |
+
lora_image_3
|
| 326 |
+
)
|
| 327 |
+
|
| 328 |
+
@spaces.GPU(duration=75)
|
| 329 |
+
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress):
|
| 330 |
+
print("Generating image...")
|
| 331 |
+
pipe.to("cuda")
|
| 332 |
+
generator = torch.Generator(device="cuda").manual_seed(seed)
|
| 333 |
+
with calculateDuration("Generating image"):
|
| 334 |
+
# Generate image
|
| 335 |
+
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
|
| 336 |
+
prompt=prompt_mash,
|
| 337 |
+
num_inference_steps=steps,
|
| 338 |
+
guidance_scale=cfg_scale,
|
| 339 |
+
width=width,
|
| 340 |
+
height=height,
|
| 341 |
+
generator=generator,
|
| 342 |
+
joint_attention_kwargs={"scale": 1.0},
|
| 343 |
+
output_type="pil",
|
| 344 |
+
good_vae=good_vae,
|
| 345 |
+
):
|
| 346 |
+
yield img
|
| 347 |
+
|
| 348 |
+
@spaces.GPU(duration=75)
|
| 349 |
+
def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps, cfg_scale, width, height, seed):
|
| 350 |
+
pipe_i2i.to("cuda")
|
| 351 |
+
generator = torch.Generator(device="cuda").manual_seed(seed)
|
| 352 |
+
image_input = load_image(image_input_path)
|
| 353 |
+
final_image = pipe_i2i(
|
| 354 |
+
prompt=prompt_mash,
|
| 355 |
+
image=image_input,
|
| 356 |
+
strength=image_strength,
|
| 357 |
+
num_inference_steps=steps,
|
| 358 |
+
guidance_scale=cfg_scale,
|
| 359 |
+
width=width,
|
| 360 |
+
height=height,
|
| 361 |
+
generator=generator,
|
| 362 |
+
joint_attention_kwargs={"scale": 1.0},
|
| 363 |
+
output_type="pil",
|
| 364 |
+
).images[0]
|
| 365 |
+
return final_image
|
| 366 |
+
|
| 367 |
+
def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, randomize_seed, seed, width, height, loras_state, progress=gr.Progress(track_tqdm=True)):
|
| 368 |
+
try:
|
| 369 |
+
# ํ๊ธ ๊ฐ์ง ๋ฐ ๋ฒ์ญ (์ด ๋ถ๋ถ์ ๊ทธ๋๋ก ์ ์ง)
|
| 370 |
+
if any('\u3131' <= char <= '\u318E' or '\uAC00' <= char <= '\uD7A3' for char in prompt):
|
| 371 |
+
translated = translator(prompt, max_length=512)[0]['translation_text']
|
| 372 |
+
print(f"Original prompt: {prompt}")
|
| 373 |
+
print(f"Translated prompt: {translated}")
|
| 374 |
+
prompt = translated
|
| 375 |
+
|
| 376 |
+
if not selected_indices:
|
| 377 |
+
raise gr.Error("You must select at least one LoRA before proceeding.")
|
| 378 |
+
|
| 379 |
+
selected_loras = [loras_state[idx] for idx in selected_indices]
|
| 380 |
+
|
| 381 |
+
# Build the prompt with trigger words (์ด ๋ถ๋ถ์ ๊ทธ๋๋ก ์ ์ง)
|
| 382 |
+
prepends = []
|
| 383 |
+
appends = []
|
| 384 |
+
for lora in selected_loras:
|
| 385 |
+
trigger_word = lora.get('trigger_word', '')
|
| 386 |
+
if trigger_word:
|
| 387 |
+
if lora.get("trigger_position") == "prepend":
|
| 388 |
+
prepends.append(trigger_word)
|
| 389 |
+
else:
|
| 390 |
+
appends.append(trigger_word)
|
| 391 |
+
prompt_mash = " ".join(prepends + [prompt] + appends)
|
| 392 |
+
print("Prompt Mash: ", prompt_mash)
|
| 393 |
+
|
| 394 |
+
# Unload previous LoRA weights
|
| 395 |
+
with calculateDuration("Unloading LoRA"):
|
| 396 |
+
pipe.unload_lora_weights()
|
| 397 |
+
pipe_i2i.unload_lora_weights()
|
| 398 |
+
|
| 399 |
+
print(f"Active adapters before loading: {pipe.get_active_adapters()}")
|
| 400 |
+
|
| 401 |
+
# Load LoRA weights with respective scales
|
| 402 |
+
lora_names = []
|
| 403 |
+
lora_weights = []
|
| 404 |
+
with calculateDuration("Loading LoRA weights"):
|
| 405 |
+
for idx, lora in enumerate(selected_loras):
|
| 406 |
+
try:
|
| 407 |
+
lora_name = f"lora_{idx}"
|
| 408 |
+
lora_path = lora['repo']
|
| 409 |
+
weight_name = lora.get("weights")
|
| 410 |
+
print(f"Loading LoRA {lora_name} from {lora_path}")
|
| 411 |
+
if image_input is not None:
|
| 412 |
+
if weight_name:
|
| 413 |
+
pipe_i2i.load_lora_weights(lora_path, weight_name=weight_name, adapter_name=lora_name)
|
| 414 |
+
else:
|
| 415 |
+
pipe_i2i.load_lora_weights(lora_path, adapter_name=lora_name)
|
| 416 |
+
else:
|
| 417 |
+
if weight_name:
|
| 418 |
+
pipe.load_lora_weights(lora_path, weight_name=weight_name, adapter_name=lora_name)
|
| 419 |
+
else:
|
| 420 |
+
pipe.load_lora_weights(lora_path, adapter_name=lora_name)
|
| 421 |
+
lora_names.append(lora_name)
|
| 422 |
+
lora_weights.append(lora_scale_1 if idx == 0 else lora_scale_2 if idx == 1 else lora_scale_3)
|
| 423 |
+
except Exception as e:
|
| 424 |
+
print(f"Failed to load LoRA {lora_name}: {str(e)}")
|
| 425 |
+
|
| 426 |
+
print("Loaded LoRAs:", lora_names)
|
| 427 |
+
print("Adapter weights:", lora_weights)
|
| 428 |
+
|
| 429 |
+
if lora_names:
|
| 430 |
+
if image_input is not None:
|
| 431 |
+
pipe_i2i.set_adapters(lora_names, adapter_weights=lora_weights)
|
| 432 |
+
else:
|
| 433 |
+
pipe.set_adapters(lora_names, adapter_weights=lora_weights)
|
| 434 |
+
else:
|
| 435 |
+
print("No LoRAs were successfully loaded.")
|
| 436 |
+
return None, seed, gr.update(visible=False)
|
| 437 |
+
|
| 438 |
+
print(f"Active adapters after loading: {pipe.get_active_adapters()}")
|
| 439 |
+
|
| 440 |
+
# ์ฌ๊ธฐ์๋ถํฐ ์ด๋ฏธ์ง ์์ฑ ๋ก์ง (์ด ๋ถ๋ถ์ ๊ทธ๋๋ก ์ ์ง)
|
| 441 |
+
with calculateDuration("Randomizing seed"):
|
| 442 |
+
if randomize_seed:
|
| 443 |
+
seed = random.randint(0, MAX_SEED)
|
| 444 |
+
|
| 445 |
+
if image_input is not None:
|
| 446 |
+
final_image = generate_image_to_image(prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, seed)
|
| 447 |
+
else:
|
| 448 |
+
image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress)
|
| 449 |
+
final_image = None
|
| 450 |
+
step_counter = 0
|
| 451 |
+
for image in image_generator:
|
| 452 |
+
step_counter += 1
|
| 453 |
+
final_image = image
|
| 454 |
+
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
|
| 455 |
+
yield image, seed, gr.update(value=progress_bar, visible=True)
|
| 456 |
+
|
| 457 |
+
if final_image is None:
|
| 458 |
+
raise Exception("Failed to generate image")
|
| 459 |
+
|
| 460 |
+
return final_image, seed, gr.update(visible=False)
|
| 461 |
+
|
| 462 |
+
except Exception as e:
|
| 463 |
+
print(f"Error in run_lora: {str(e)}")
|
| 464 |
+
return None, seed, gr.update(visible=False)
|
| 465 |
+
|
| 466 |
+
run_lora.zerogpu = True
|
| 467 |
+
|
| 468 |
+
def get_huggingface_safetensors(link):
|
| 469 |
+
split_link = link.split("/")
|
| 470 |
+
if len(split_link) == 2:
|
| 471 |
+
model_card = ModelCard.load(link)
|
| 472 |
+
base_model = model_card.data.get("base_model")
|
| 473 |
+
print(f"Base model: {base_model}")
|
| 474 |
+
if base_model not in ["black-forest-labs/FLUX.1-dev", "black-forest-labs/FLUX.1-schnell"]:
|
| 475 |
+
raise Exception("Not a FLUX LoRA!")
|
| 476 |
+
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
|
| 477 |
+
trigger_word = model_card.data.get("instance_prompt", "")
|
| 478 |
+
image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
|
| 479 |
+
fs = HfFileSystem()
|
| 480 |
+
safetensors_name = None
|
| 481 |
+
try:
|
| 482 |
+
list_of_files = fs.ls(link, detail=False)
|
| 483 |
+
for file in list_of_files:
|
| 484 |
+
if file.endswith(".safetensors"):
|
| 485 |
+
safetensors_name = file.split("/")[-1]
|
| 486 |
+
if not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp")):
|
| 487 |
+
image_elements = file.split("/")
|
| 488 |
+
image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}"
|
| 489 |
+
except Exception as e:
|
| 490 |
+
print(e)
|
| 491 |
+
raise gr.Error("Invalid Hugging Face repository with a *.safetensors LoRA")
|
| 492 |
+
if not safetensors_name:
|
| 493 |
+
raise gr.Error("No *.safetensors file found in the repository")
|
| 494 |
+
return split_link[1], link, safetensors_name, trigger_word, image_url
|
| 495 |
+
else:
|
| 496 |
+
raise gr.Error("Invalid Hugging Face repository link")
|
| 497 |
+
|
| 498 |
+
def check_custom_model(link):
|
| 499 |
+
if link.endswith(".safetensors"):
|
| 500 |
+
# Treat as direct link to the LoRA weights
|
| 501 |
+
title = os.path.basename(link)
|
| 502 |
+
repo = link
|
| 503 |
+
path = None # No specific weight name
|
| 504 |
+
trigger_word = ""
|
| 505 |
+
image_url = None
|
| 506 |
+
return title, repo, path, trigger_word, image_url
|
| 507 |
+
elif link.startswith("https://"):
|
| 508 |
+
if "huggingface.co" in link:
|
| 509 |
+
link_split = link.split("huggingface.co/")
|
| 510 |
+
return get_huggingface_safetensors(link_split[1])
|
| 511 |
+
else:
|
| 512 |
+
raise Exception("Unsupported URL")
|
| 513 |
+
else:
|
| 514 |
+
# Assume it's a Hugging Face model path
|
| 515 |
+
return get_huggingface_safetensors(link)
|
| 516 |
+
|
| 517 |
+
def update_history(new_image, history):
|
| 518 |
+
"""Updates the history gallery with the new image."""
|
| 519 |
+
if history is None:
|
| 520 |
+
history = []
|
| 521 |
+
if new_image is not None:
|
| 522 |
+
history.insert(0, new_image)
|
| 523 |
+
return history
|
| 524 |
+
|
| 525 |
+
custom_theme = gr.themes.Base(
|
| 526 |
+
primary_hue="blue",
|
| 527 |
+
secondary_hue="purple",
|
| 528 |
+
neutral_hue="slate",
|
| 529 |
+
).set(
|
| 530 |
+
button_primary_background_fill="*primary_500",
|
| 531 |
+
button_primary_background_fill_dark="*primary_600",
|
| 532 |
+
button_primary_background_fill_hover="*primary_400",
|
| 533 |
+
button_primary_border_color="*primary_500",
|
| 534 |
+
button_primary_border_color_dark="*primary_600",
|
| 535 |
+
button_primary_text_color="white",
|
| 536 |
+
button_primary_text_color_dark="white",
|
| 537 |
+
button_secondary_background_fill="*neutral_100",
|
| 538 |
+
button_secondary_background_fill_dark="*neutral_700",
|
| 539 |
+
button_secondary_background_fill_hover="*neutral_50",
|
| 540 |
+
button_secondary_text_color="*neutral_800",
|
| 541 |
+
button_secondary_text_color_dark="white",
|
| 542 |
+
background_fill_primary="*neutral_50",
|
| 543 |
+
background_fill_primary_dark="*neutral_900",
|
| 544 |
+
block_background_fill="white",
|
| 545 |
+
block_background_fill_dark="*neutral_800",
|
| 546 |
+
block_label_background_fill="*primary_500",
|
| 547 |
+
block_label_background_fill_dark="*primary_600",
|
| 548 |
+
block_label_text_color="white",
|
| 549 |
+
block_label_text_color_dark="white",
|
| 550 |
+
block_title_text_color="*neutral_800",
|
| 551 |
+
block_title_text_color_dark="white",
|
| 552 |
+
input_background_fill="white",
|
| 553 |
+
input_background_fill_dark="*neutral_800",
|
| 554 |
+
input_border_color="*neutral_200",
|
| 555 |
+
input_border_color_dark="*neutral_700",
|
| 556 |
+
input_placeholder_color="*neutral_400",
|
| 557 |
+
input_placeholder_color_dark="*neutral_400",
|
| 558 |
+
shadow_spread="8px",
|
| 559 |
+
shadow_inset="0px 2px 4px 0px rgba(0,0,0,0.05)"
|
| 560 |
+
)
|
| 561 |
+
|
| 562 |
+
css = '''
|
| 563 |
+
/* ๊ธฐ๋ณธ ๋ฒํผ ๋ฐ ์ปดํฌ๋ํธ ์คํ์ผ */
|
| 564 |
+
#gen_btn {
|
| 565 |
+
height: 100%
|
| 566 |
+
}
|
| 567 |
+
|
| 568 |
+
#title {
|
| 569 |
+
text-align: center
|
| 570 |
+
}
|
| 571 |
+
|
| 572 |
+
#title h1 {
|
| 573 |
+
font-size: 3em;
|
| 574 |
+
display: inline-flex;
|
| 575 |
+
align-items: center
|
| 576 |
+
}
|
| 577 |
+
|
| 578 |
+
#title img {
|
| 579 |
+
width: 100px;
|
| 580 |
+
margin-right: 0.25em
|
| 581 |
+
}
|
| 582 |
+
|
| 583 |
+
#lora_list {
|
| 584 |
+
background: var(--block-background-fill);
|
| 585 |
+
padding: 0 1em .3em;
|
| 586 |
+
font-size: 90%
|
| 587 |
+
}
|
| 588 |
+
|
| 589 |
+
/* ์ปค์คํ
LoRA ์นด๋ ์คํ์ผ */
|
| 590 |
+
.custom_lora_card {
|
| 591 |
+
margin-bottom: 1em
|
| 592 |
+
}
|
| 593 |
+
|
| 594 |
+
.card_internal {
|
| 595 |
+
display: flex;
|
| 596 |
+
height: 100px;
|
| 597 |
+
margin-top: .5em
|
| 598 |
+
}
|
| 599 |
+
|
| 600 |
+
.card_internal img {
|
| 601 |
+
margin-right: 1em
|
| 602 |
+
}
|
| 603 |
+
|
| 604 |
+
/* ์ ํธ๋ฆฌํฐ ํด๋์ค */
|
| 605 |
+
.styler {
|
| 606 |
+
--form-gap-width: 0px !important
|
| 607 |
+
}
|
| 608 |
+
|
| 609 |
+
/* ํ๋ก๊ทธ๋ ์ค ๋ฐ ์คํ์ผ */
|
| 610 |
+
#progress {
|
| 611 |
+
height: 30px;
|
| 612 |
+
width: 90% !important;
|
| 613 |
+
margin: 0 auto !important;
|
| 614 |
+
}
|
| 615 |
+
|
| 616 |
+
#progress .generating {
|
| 617 |
+
display: none
|
| 618 |
+
}
|
| 619 |
+
|
| 620 |
+
.progress-container {
|
| 621 |
+
width: 100%;
|
| 622 |
+
height: 30px;
|
| 623 |
+
background-color: #f0f0f0;
|
| 624 |
+
border-radius: 15px;
|
| 625 |
+
overflow: hidden;
|
| 626 |
+
margin-bottom: 20px
|
| 627 |
+
}
|
| 628 |
+
|
| 629 |
+
.progress-bar {
|
| 630 |
+
height: 100%;
|
| 631 |
+
background-color: #4f46e5;
|
| 632 |
+
width: calc(var(--current) / var(--total) * 100%);
|
| 633 |
+
transition: width 0.5s ease-in-out
|
| 634 |
+
}
|
| 635 |
+
|
| 636 |
+
/* ์ปดํฌ๋ํธ ํน์ ์คํ์ผ */
|
| 637 |
+
#component-8, .button_total {
|
| 638 |
+
height: 100%;
|
| 639 |
+
align-self: stretch;
|
| 640 |
+
}
|
| 641 |
+
|
| 642 |
+
#loaded_loras [data-testid="block-info"] {
|
| 643 |
+
font-size: 80%
|
| 644 |
+
}
|
| 645 |
+
|
| 646 |
+
#custom_lora_structure {
|
| 647 |
+
background: var(--block-background-fill)
|
| 648 |
+
}
|
| 649 |
+
|
| 650 |
+
#custom_lora_btn {
|
| 651 |
+
margin-top: auto;
|
| 652 |
+
margin-bottom: 11px
|
| 653 |
+
}
|
| 654 |
+
|
| 655 |
+
#random_btn {
|
| 656 |
+
font-size: 300%
|
| 657 |
+
}
|
| 658 |
+
|
| 659 |
+
#component-11 {
|
| 660 |
+
align-self: stretch;
|
| 661 |
+
}
|
| 662 |
+
|
| 663 |
+
/* ๊ฐค๋ฌ๋ฆฌ ๋ฉ์ธ ์คํ์ผ */
|
| 664 |
+
#lora_gallery {
|
| 665 |
+
margin: 20px 0;
|
| 666 |
+
padding: 10px;
|
| 667 |
+
border: 1px solid #ddd;
|
| 668 |
+
border-radius: 12px;
|
| 669 |
+
background: linear-gradient(to bottom right, #ffffff, #f8f9fa);
|
| 670 |
+
width: 100% !important;
|
| 671 |
+
height: 800px !important;
|
| 672 |
+
box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1);
|
| 673 |
+
display: block !important;
|
| 674 |
+
}
|
| 675 |
+
|
| 676 |
+
/* ๊ฐค๋ฌ๋ฆฌ ๊ทธ๋ฆฌ๋ ์คํ์ผ */
|
| 677 |
+
#gallery {
|
| 678 |
+
display: grid !important;
|
| 679 |
+
grid-template-columns: repeat(10, 1fr) !important;
|
| 680 |
+
gap: 10px !important;
|
| 681 |
+
padding: 10px !important;
|
| 682 |
+
width: 100% !important;
|
| 683 |
+
height: 100% !important;
|
| 684 |
+
overflow-y: auto !important;
|
| 685 |
+
max-width: 100% !important;
|
| 686 |
+
}
|
| 687 |
+
|
| 688 |
+
/* ๊ฐค๋ฌ๋ฆฌ ์์ดํ
์คํ์ผ */
|
| 689 |
+
.gallery-item {
|
| 690 |
+
position: relative !important;
|
| 691 |
+
width: 100% !important;
|
| 692 |
+
aspect-ratio: 1 !important;
|
| 693 |
+
margin: 0 !important;
|
| 694 |
+
box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1);
|
| 695 |
+
transition: transform 0.3s ease, box-shadow 0.3s ease;
|
| 696 |
+
border-radius: 12px;
|
| 697 |
+
overflow: hidden;
|
| 698 |
+
}
|
| 699 |
+
|
| 700 |
+
.gallery-item img {
|
| 701 |
+
width: 100% !important;
|
| 702 |
+
height: 100% !important;
|
| 703 |
+
object-fit: cover !important;
|
| 704 |
+
border-radius: 12px !important;
|
| 705 |
+
}
|
| 706 |
+
|
| 707 |
+
/* ๊ฐค๋ฌ๋ฆฌ ๊ทธ๋ฆฌ๋ ๋ํผ */
|
| 708 |
+
.wrap, .svelte-w6dy5e {
|
| 709 |
+
display: grid !important;
|
| 710 |
+
grid-template-columns: repeat(10, 1fr) !important;
|
| 711 |
+
gap: 10px !important;
|
| 712 |
+
width: 100% !important;
|
| 713 |
+
max-width: 100% !important;
|
| 714 |
+
}
|
| 715 |
+
|
| 716 |
+
/* ์ปจํ
์ด๋ ๊ณตํต ์คํ์ผ */
|
| 717 |
+
.container, .content, .block, .contain {
|
| 718 |
+
width: 100% !important;
|
| 719 |
+
max-width: 100% !important;
|
| 720 |
+
margin: 0 !important;
|
| 721 |
+
padding: 0 !important;
|
| 722 |
+
}
|
| 723 |
+
|
| 724 |
+
.row {
|
| 725 |
+
width: 100% !important;
|
| 726 |
+
margin: 0 !important;
|
| 727 |
+
padding: 0 !important;
|
| 728 |
+
}
|
| 729 |
+
|
| 730 |
+
/* ๋ฒํผ ์คํ์ผ */
|
| 731 |
+
.button_total {
|
| 732 |
+
box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1), 0 2px 4px -1px rgba(0, 0, 0, 0.06);
|
| 733 |
+
transition: all 0.3s ease;
|
| 734 |
+
}
|
| 735 |
+
|
| 736 |
+
.button_total:hover {
|
| 737 |
+
transform: translateY(-2px);
|
| 738 |
+
box-shadow: 0 10px 15px -3px rgba(0, 0, 0, 0.1), 0 4px 6px -2px rgba(0, 0, 0, 0.05);
|
| 739 |
+
}
|
| 740 |
+
|
| 741 |
+
/* ์
๋ ฅ ํ๋ ์คํ์ผ */
|
| 742 |
+
input, textarea {
|
| 743 |
+
box-shadow: inset 0 2px 4px 0 rgba(0, 0, 0, 0.06);
|
| 744 |
+
transition: all 0.3s ease;
|
| 745 |
+
}
|
| 746 |
+
|
| 747 |
+
input:focus, textarea:focus {
|
| 748 |
+
box-shadow: 0 0 0 3px rgba(66, 153, 225, 0.5);
|
| 749 |
+
}
|
| 750 |
+
|
| 751 |
+
/* ์ปดํฌ๋ํธ border-radius */
|
| 752 |
+
.gradio-container .input,
|
| 753 |
+
.gradio-container .button,
|
| 754 |
+
.gradio-container .block {
|
| 755 |
+
border-radius: 12px;
|
| 756 |
+
}
|
| 757 |
+
|
| 758 |
+
/* ์คํฌ๋กค๋ฐ ์คํ์ผ */
|
| 759 |
+
#gallery::-webkit-scrollbar {
|
| 760 |
+
width: 8px;
|
| 761 |
+
}
|
| 762 |
+
|
| 763 |
+
#gallery::-webkit-scrollbar-track {
|
| 764 |
+
background: #f1f1f1;
|
| 765 |
+
border-radius: 4px;
|
| 766 |
+
}
|
| 767 |
+
|
| 768 |
+
#gallery::-webkit-scrollbar-thumb {
|
| 769 |
+
background: #888;
|
| 770 |
+
border-radius: 4px;
|
| 771 |
+
}
|
| 772 |
+
|
| 773 |
+
#gallery::-webkit-scrollbar-thumb:hover {
|
| 774 |
+
background: #555;
|
| 775 |
+
}
|
| 776 |
+
|
| 777 |
+
/* Flex ์ปจํ
์ด๋ */
|
| 778 |
+
.flex {
|
| 779 |
+
width: 100% !important;
|
| 780 |
+
max-width: 100% !important;
|
| 781 |
+
display: flex !important;
|
| 782 |
+
}
|
| 783 |
+
|
| 784 |
+
/* Svelte ํน์ ํด๋์ค */
|
| 785 |
+
.svelte-1p9xokt {
|
| 786 |
+
width: 100% !important;
|
| 787 |
+
max-width: 100% !important;
|
| 788 |
+
}
|
| 789 |
+
|
| 790 |
+
/* Footer ์จ๊น */
|
| 791 |
+
#footer {
|
| 792 |
+
visibility: hidden;
|
| 793 |
+
}
|
| 794 |
+
|
| 795 |
+
/* ๊ฒฐ๊ณผ ์ด๋ฏธ์ง ๋ฐ ์ปจํ
์ด๋ ์คํ์ผ */
|
| 796 |
+
#result_column, #result_column > div {
|
| 797 |
+
display: flex !important;
|
| 798 |
+
flex-direction: column !important;
|
| 799 |
+
align-items: flex-start !important; /* center์์ flex-start๋ก ๋ณ๊ฒฝ */
|
| 800 |
+
width: 100% !important;
|
| 801 |
+
margin: 0 !important; /* auto์์ 0์ผ๋ก ๋ณ๊ฒฝ */
|
| 802 |
+
}
|
| 803 |
+
|
| 804 |
+
.generated-image, .generated-image > div {
|
| 805 |
+
display: flex !important;
|
| 806 |
+
justify-content: flex-start !important; /* center์์ flex-start๋ก ๋ณ๊ฒฝ */
|
| 807 |
+
align-items: flex-start !important; /* center์์ flex-start๋ก ๋ณ๊ฒฝ */
|
| 808 |
+
width: 90% !important;
|
| 809 |
+
max-width: 768px !important;
|
| 810 |
+
margin: 0 !important; /* auto์์ 0์ผ๋ก ๋ณ๊ฒฝ */
|
| 811 |
+
margin-left: 20px !important; /* ์ผ์ชฝ ์ฌ๋ฐฑ ์ถ๊ฐ */
|
| 812 |
+
}
|
| 813 |
+
|
| 814 |
+
.generated-image img {
|
| 815 |
+
margin: 0 !important; /* auto์์ 0์ผ๋ก ๋ณ๊ฒฝ */
|
| 816 |
+
display: block !important;
|
| 817 |
+
max-width: 100% !important;
|
| 818 |
+
}
|
| 819 |
+
|
| 820 |
+
/* ํ์คํ ๋ฆฌ ๊ฐค๋ฌ๋ฆฌ๋ ์ข์ธก ์ ๋ ฌ๋ก ๋ณ๊ฒฝ */
|
| 821 |
+
.history-gallery {
|
| 822 |
+
display: flex !important;
|
| 823 |
+
justify-content: flex-start !important; /* center์์ flex-start๋ก ๋ณ๊ฒฝ */
|
| 824 |
+
width: 90% !important;
|
| 825 |
+
max-width: 90% !important;
|
| 826 |
+
margin: 0 !important; /* auto์์ 0์ผ๋ก ๋ณ๊ฒฝ */
|
| 827 |
+
margin-left: 20px !important; /* ์ผ์ชฝ ์ฌ๋ฐฑ ์ถ๊ฐ */
|
| 828 |
+
}
|
| 829 |
+
'''
|
| 830 |
+
|
| 831 |
+
with gr.Blocks(theme=custom_theme, css=css, delete_cache=(60, 3600)) as app:
|
| 832 |
+
loras_state = gr.State(loras)
|
| 833 |
+
selected_indices = gr.State([])
|
| 834 |
+
|
| 835 |
+
gr.Markdown(
|
| 836 |
+
"""
|
| 837 |
+
# MixGen3: ๋ฉํฐ Lora(์ด๋ฏธ์ง ํ์ต) ํตํฉ ์์ฑ ๋ชจ๋ธ
|
| 838 |
+
### ์ฌ์ฉ ์๋ด:
|
| 839 |
+
๊ฐค๋ฌ๋ฆฌ์์ ์ํ๋ ๋ชจ๋ธ์ ์ ํ(์ต๋ 3๊ฐ๊น์ง) < ํ๋กฌํํธ์ ํ๊ธ ๋๋ ์๋ฌธ์ผ๋ก ์ํ๋ ๋ด์ฉ์ ์
๋ ฅ < Generate ๋ฒํผ ์คํ
|
| 840 |
+
"""
|
| 841 |
+
)
|
| 842 |
+
|
| 843 |
+
with gr.Row(elem_id="lora_gallery", equal_height=True):
|
| 844 |
+
gallery = gr.Gallery(
|
| 845 |
+
value=[(item["image"], item["title"]) for item in loras],
|
| 846 |
+
label="LoRA Explorer Gallery",
|
| 847 |
+
columns=11,
|
| 848 |
+
elem_id="gallery",
|
| 849 |
+
height=800,
|
| 850 |
+
object_fit="cover",
|
| 851 |
+
show_label=True,
|
| 852 |
+
allow_preview=False,
|
| 853 |
+
show_share_button=False,
|
| 854 |
+
container=True,
|
| 855 |
+
preview=False
|
| 856 |
+
)
|
| 857 |
+
|
| 858 |
+
with gr.Tab(label="Generate"):
|
| 859 |
+
# Prompt and Generate Button
|
| 860 |
+
with gr.Row():
|
| 861 |
+
with gr.Column(scale=3):
|
| 862 |
+
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA")
|
| 863 |
+
with gr.Column(scale=1):
|
| 864 |
+
generate_button = gr.Button("Generate", variant="primary", elem_classes=["button_total"])
|
| 865 |
+
|
| 866 |
+
# LoRA Selection Area
|
| 867 |
+
with gr.Row(elem_id="loaded_loras"):
|
| 868 |
+
# Randomize Button
|
| 869 |
+
with gr.Column(scale=1, min_width=25):
|
| 870 |
+
randomize_button = gr.Button("๐ฒ", variant="secondary", scale=1, elem_id="random_btn")
|
| 871 |
+
|
| 872 |
+
# LoRA 1
|
| 873 |
+
with gr.Column(scale=8):
|
| 874 |
+
with gr.Row():
|
| 875 |
+
with gr.Column(scale=0, min_width=50):
|
| 876 |
+
lora_image_1 = gr.Image(label="LoRA 1 Image", interactive=False, min_width=50, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50)
|
| 877 |
+
with gr.Column(scale=3, min_width=100):
|
| 878 |
+
selected_info_1 = gr.Markdown("Select a LoRA 1")
|
| 879 |
+
with gr.Column(scale=5, min_width=50):
|
| 880 |
+
lora_scale_1 = gr.Slider(label="LoRA 1 Scale", minimum=0, maximum=3, step=0.01, value=1.15)
|
| 881 |
+
with gr.Row():
|
| 882 |
+
remove_button_1 = gr.Button("Remove", size="sm")
|
| 883 |
+
|
| 884 |
+
# LoRA 2
|
| 885 |
+
with gr.Column(scale=8):
|
| 886 |
+
with gr.Row():
|
| 887 |
+
with gr.Column(scale=0, min_width=50):
|
| 888 |
+
lora_image_2 = gr.Image(label="LoRA 2 Image", interactive=False, min_width=50, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50)
|
| 889 |
+
with gr.Column(scale=3, min_width=100):
|
| 890 |
+
selected_info_2 = gr.Markdown("Select a LoRA 2")
|
| 891 |
+
with gr.Column(scale=5, min_width=50):
|
| 892 |
+
lora_scale_2 = gr.Slider(label="LoRA 2 Scale", minimum=0, maximum=3, step=0.01, value=1.15)
|
| 893 |
+
with gr.Row():
|
| 894 |
+
remove_button_2 = gr.Button("Remove", size="sm")
|
| 895 |
+
|
| 896 |
+
# LoRA 3
|
| 897 |
+
with gr.Column(scale=8):
|
| 898 |
+
with gr.Row():
|
| 899 |
+
with gr.Column(scale=0, min_width=50):
|
| 900 |
+
lora_image_3 = gr.Image(label="LoRA 3 Image", interactive=False, min_width=50, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50)
|
| 901 |
+
with gr.Column(scale=3, min_width=100):
|
| 902 |
+
selected_info_3 = gr.Markdown("Select a LoRA 3")
|
| 903 |
+
with gr.Column(scale=5, min_width=50):
|
| 904 |
+
lora_scale_3 = gr.Slider(label="LoRA 3 Scale", minimum=0, maximum=3, step=0.01, value=1.15)
|
| 905 |
+
with gr.Row():
|
| 906 |
+
remove_button_3 = gr.Button("Remove", size="sm")
|
| 907 |
+
|
| 908 |
+
# Result and Progress Area
|
| 909 |
+
with gr.Column(elem_id="result_column"):
|
| 910 |
+
progress_bar = gr.Markdown(elem_id="progress", visible=False)
|
| 911 |
+
with gr.Column(elem_id="result_box"): # Box๋ฅผ Column์ผ๋ก ๋ณ๊ฒฝ
|
| 912 |
+
result = gr.Image(
|
| 913 |
+
label="Generated Image",
|
| 914 |
+
interactive=False,
|
| 915 |
+
elem_classes=["generated-image"],
|
| 916 |
+
container=True,
|
| 917 |
+
elem_id="result_image",
|
| 918 |
+
width="100%"
|
| 919 |
+
)
|
| 920 |
+
with gr.Accordion("History", open=False):
|
| 921 |
+
history_gallery = gr.Gallery(
|
| 922 |
+
label="History",
|
| 923 |
+
columns=6,
|
| 924 |
+
object_fit="contain",
|
| 925 |
+
interactive=False,
|
| 926 |
+
elem_classes=["history-gallery"]
|
| 927 |
+
)
|
| 928 |
+
|
| 929 |
+
|
| 930 |
+
# Advanced Settings
|
| 931 |
+
with gr.Row():
|
| 932 |
+
with gr.Accordion("Advanced Settings", open=False):
|
| 933 |
+
with gr.Row():
|
| 934 |
+
input_image = gr.Image(label="Input image", type="filepath")
|
| 935 |
+
image_strength = gr.Slider(label="Denoise Strength", info="Lower means more image influence", minimum=0.1, maximum=1.0, step=0.01, value=0.75)
|
| 936 |
+
with gr.Column():
|
| 937 |
+
with gr.Row():
|
| 938 |
+
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
|
| 939 |
+
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28)
|
| 940 |
+
with gr.Row():
|
| 941 |
+
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
|
| 942 |
+
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
|
| 943 |
+
with gr.Row():
|
| 944 |
+
randomize_seed = gr.Checkbox(True, label="Randomize seed")
|
| 945 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
|
| 946 |
+
|
| 947 |
+
# Custom LoRA Section
|
| 948 |
+
with gr.Column():
|
| 949 |
+
with gr.Group():
|
| 950 |
+
with gr.Row(elem_id="custom_lora_structure"):
|
| 951 |
+
custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path or *.safetensors public URL", placeholder="ginipick/flux-lora-eric-cat", scale=3, min_width=150)
|
| 952 |
+
add_custom_lora_button = gr.Button("Add Custom LoRA", elem_id="custom_lora_btn", scale=2, min_width=150)
|
| 953 |
+
remove_custom_lora_button = gr.Button("Remove Custom LoRA", visible=False)
|
| 954 |
+
gr.Markdown("[Check the list of FLUX LoRAs](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list")
|
| 955 |
+
|
| 956 |
+
# Event Handlers
|
| 957 |
+
gallery.select(
|
| 958 |
+
update_selection,
|
| 959 |
+
inputs=[selected_indices, loras_state, width, height],
|
| 960 |
+
outputs=[prompt, selected_info_1, selected_info_2, selected_info_3, selected_indices,
|
| 961 |
+
lora_scale_1, lora_scale_2, lora_scale_3, width, height,
|
| 962 |
+
lora_image_1, lora_image_2, lora_image_3]
|
| 963 |
+
)
|
| 964 |
+
|
| 965 |
+
remove_button_1.click(
|
| 966 |
+
remove_lora_1,
|
| 967 |
+
inputs=[selected_indices, loras_state],
|
| 968 |
+
outputs=[selected_info_1, selected_info_2, selected_info_3, selected_indices,
|
| 969 |
+
lora_scale_1, lora_scale_2, lora_scale_3,
|
| 970 |
+
lora_image_1, lora_image_2, lora_image_3]
|
| 971 |
+
)
|
| 972 |
+
|
| 973 |
+
remove_button_2.click(
|
| 974 |
+
remove_lora_2,
|
| 975 |
+
inputs=[selected_indices, loras_state],
|
| 976 |
+
outputs=[selected_info_1, selected_info_2, selected_info_3, selected_indices,
|
| 977 |
+
lora_scale_1, lora_scale_2, lora_scale_3,
|
| 978 |
+
lora_image_1, lora_image_2, lora_image_3]
|
| 979 |
+
)
|
| 980 |
+
|
| 981 |
+
remove_button_3.click(
|
| 982 |
+
remove_lora_3,
|
| 983 |
+
inputs=[selected_indices, loras_state],
|
| 984 |
+
outputs=[selected_info_1, selected_info_2, selected_info_3, selected_indices,
|
| 985 |
+
lora_scale_1, lora_scale_2, lora_scale_3,
|
| 986 |
+
lora_image_1, lora_image_2, lora_image_3]
|
| 987 |
+
)
|
| 988 |
+
|
| 989 |
+
randomize_button.click(
|
| 990 |
+
randomize_loras,
|
| 991 |
+
inputs=[selected_indices, loras_state],
|
| 992 |
+
outputs=[selected_info_1, selected_info_2, selected_info_3, selected_indices,
|
| 993 |
+
lora_scale_1, lora_scale_2, lora_scale_3,
|
| 994 |
+
lora_image_1, lora_image_2, lora_image_3, prompt]
|
| 995 |
+
)
|
| 996 |
+
|
| 997 |
+
add_custom_lora_button.click(
|
| 998 |
+
add_custom_lora,
|
| 999 |
+
inputs=[custom_lora, selected_indices, loras_state],
|
| 1000 |
+
outputs=[loras_state, gallery, selected_info_1, selected_info_2, selected_info_3,
|
| 1001 |
+
selected_indices, lora_scale_1, lora_scale_2, lora_scale_3,
|
| 1002 |
+
lora_image_1, lora_image_2, lora_image_3]
|
| 1003 |
+
)
|
| 1004 |
+
|
| 1005 |
+
remove_custom_lora_button.click(
|
| 1006 |
+
remove_custom_lora,
|
| 1007 |
+
inputs=[selected_indices, loras_state],
|
| 1008 |
+
outputs=[loras_state, gallery, selected_info_1, selected_info_2, selected_info_3,
|
| 1009 |
+
selected_indices, lora_scale_1, lora_scale_2, lora_scale_3,
|
| 1010 |
+
lora_image_1, lora_image_2, lora_image_3]
|
| 1011 |
+
)
|
| 1012 |
+
|
| 1013 |
+
gr.on(
|
| 1014 |
+
triggers=[generate_button.click, prompt.submit],
|
| 1015 |
+
fn=run_lora,
|
| 1016 |
+
inputs=[prompt, input_image, image_strength, cfg_scale, steps,
|
| 1017 |
+
selected_indices, lora_scale_1, lora_scale_2, lora_scale_3,
|
| 1018 |
+
randomize_seed, seed, width, height, loras_state],
|
| 1019 |
+
outputs=[result, seed, progress_bar]
|
| 1020 |
+
).then(
|
| 1021 |
+
fn=lambda x, history: update_history(x, history) if x is not None else history,
|
| 1022 |
+
inputs=[result, history_gallery],
|
| 1023 |
+
outputs=history_gallery
|
| 1024 |
+
)
|
| 1025 |
+
|
| 1026 |
+
if __name__ == "__main__":
|
| 1027 |
+
app.queue(max_size=20)
|
| 1028 |
+
app.launch(debug=True)
|