Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,8 +5,7 @@ import logging
|
|
| 5 |
import torch
|
| 6 |
from PIL import Image
|
| 7 |
import spaces
|
| 8 |
-
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL, AutoPipelineForImage2Image
|
| 9 |
-
from diffusers.pipelines import FluxControlNetPipeline
|
| 10 |
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
|
| 11 |
from diffusers.utils import load_image
|
| 12 |
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
|
|
@@ -21,7 +20,7 @@ import numpy as np
|
|
| 21 |
import warnings
|
| 22 |
|
| 23 |
|
| 24 |
-
huggingface_token = os.getenv("
|
| 25 |
|
| 26 |
|
| 27 |
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en", device="cpu")
|
|
@@ -61,23 +60,6 @@ pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
|
|
| 61 |
torch_dtype=dtype
|
| 62 |
).to(device)
|
| 63 |
|
| 64 |
-
# Upscale을 위한 ControlNet 설정
|
| 65 |
-
controlnet = FluxControlNetModel.from_pretrained(
|
| 66 |
-
"jasperai/Flux.1-dev-Controlnet-Upscaler", torch_dtype=torch.bfloat16
|
| 67 |
-
).to(device)
|
| 68 |
-
|
| 69 |
-
# Upscale 파이프라인 설정 (기존 pipe 재사용)
|
| 70 |
-
pipe_upscale = FluxControlNetPipeline(
|
| 71 |
-
vae=pipe.vae,
|
| 72 |
-
text_encoder=pipe.text_encoder,
|
| 73 |
-
text_encoder_2=pipe.text_encoder_2,
|
| 74 |
-
tokenizer=pipe.tokenizer,
|
| 75 |
-
tokenizer_2=pipe.tokenizer_2,
|
| 76 |
-
transformer=pipe.transformer,
|
| 77 |
-
scheduler=pipe.scheduler,
|
| 78 |
-
controlnet=controlnet
|
| 79 |
-
).to(device)
|
| 80 |
-
|
| 81 |
MAX_SEED = 2**32 - 1
|
| 82 |
MAX_PIXEL_BUDGET = 1024 * 1024
|
| 83 |
|
|
@@ -556,109 +538,6 @@ css = '''
|
|
| 556 |
footer {visibility: hidden;}
|
| 557 |
'''
|
| 558 |
|
| 559 |
-
# 업스케일 관련 함수 추가
|
| 560 |
-
def process_input(input_image, upscale_factor, **kwargs):
|
| 561 |
-
w, h = input_image.size
|
| 562 |
-
w_original, h_original = w, h
|
| 563 |
-
aspect_ratio = w / h
|
| 564 |
-
|
| 565 |
-
was_resized = False
|
| 566 |
-
|
| 567 |
-
max_size = int(np.sqrt(MAX_PIXEL_BUDGET / (upscale_factor ** 2)))
|
| 568 |
-
if w > max_size or h > max_size:
|
| 569 |
-
if w > h:
|
| 570 |
-
w_new = max_size
|
| 571 |
-
h_new = int(w_new / aspect_ratio)
|
| 572 |
-
else:
|
| 573 |
-
h_new = max_size
|
| 574 |
-
w_new = int(h_new * aspect_ratio)
|
| 575 |
-
|
| 576 |
-
input_image = input_image.resize((w_new, h_new), Image.LANCZOS)
|
| 577 |
-
was_resized = True
|
| 578 |
-
gr.Info(f"Input image resized to {w_new}x{h_new} to fit within pixel budget after upscaling.")
|
| 579 |
-
|
| 580 |
-
# resize to multiple of 8
|
| 581 |
-
w, h = input_image.size
|
| 582 |
-
w = w - w % 8
|
| 583 |
-
h = h - h % 8
|
| 584 |
-
|
| 585 |
-
return input_image.resize((w, h)), w_original, h_original, was_resized
|
| 586 |
-
|
| 587 |
-
from PIL import Image
|
| 588 |
-
import numpy as np
|
| 589 |
-
|
| 590 |
-
@spaces.GPU
|
| 591 |
-
def infer_upscale(
|
| 592 |
-
seed,
|
| 593 |
-
randomize_seed,
|
| 594 |
-
input_image,
|
| 595 |
-
num_inference_steps,
|
| 596 |
-
upscale_factor,
|
| 597 |
-
controlnet_conditioning_scale,
|
| 598 |
-
progress=gr.Progress(track_tqdm=True),
|
| 599 |
-
):
|
| 600 |
-
if input_image is None:
|
| 601 |
-
return None, seed, gr.update(), gr.update(), gr.update(), gr.update(), gr.update(visible=True, value="Please upload an image for upscaling.")
|
| 602 |
-
|
| 603 |
-
try:
|
| 604 |
-
if randomize_seed:
|
| 605 |
-
seed = random.randint(0, MAX_SEED)
|
| 606 |
-
|
| 607 |
-
input_image, w_original, h_original, was_resized = process_input(input_image, upscale_factor)
|
| 608 |
-
|
| 609 |
-
# rescale with upscale factor
|
| 610 |
-
w, h = input_image.size
|
| 611 |
-
control_image = input_image.resize((w * upscale_factor, h * upscale_factor), Image.LANCZOS)
|
| 612 |
-
|
| 613 |
-
generator = torch.Generator(device=device).manual_seed(seed)
|
| 614 |
-
|
| 615 |
-
gr.Info("Upscaling image...")
|
| 616 |
-
# 모든 텐서를 동일한 디바이스로 이동
|
| 617 |
-
pipe_upscale.to(device)
|
| 618 |
-
|
| 619 |
-
# Ensure the image is in RGB format
|
| 620 |
-
if control_image.mode != 'RGB':
|
| 621 |
-
control_image = control_image.convert('RGB')
|
| 622 |
-
|
| 623 |
-
# Convert to tensor and add batch dimension
|
| 624 |
-
control_image = torch.from_numpy(np.array(control_image)).permute(2, 0, 1).float().unsqueeze(0).to(device) / 255.0
|
| 625 |
-
|
| 626 |
-
with torch.no_grad():
|
| 627 |
-
image = pipe_upscale(
|
| 628 |
-
prompt="",
|
| 629 |
-
control_image=control_image,
|
| 630 |
-
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
| 631 |
-
num_inference_steps=num_inference_steps,
|
| 632 |
-
guidance_scale=3.5,
|
| 633 |
-
generator=generator,
|
| 634 |
-
).images[0]
|
| 635 |
-
|
| 636 |
-
# Convert the image back to PIL Image
|
| 637 |
-
if isinstance(image, torch.Tensor):
|
| 638 |
-
image = image.cpu().permute(1, 2, 0).numpy()
|
| 639 |
-
|
| 640 |
-
# Ensure the image data is in the correct range
|
| 641 |
-
image = np.clip(image * 255, 0, 255).astype(np.uint8)
|
| 642 |
-
image = Image.fromarray(image)
|
| 643 |
-
|
| 644 |
-
if was_resized:
|
| 645 |
-
gr.Info(
|
| 646 |
-
f"Resizing output image to targeted {w_original * upscale_factor}x{h_original * upscale_factor} size."
|
| 647 |
-
)
|
| 648 |
-
image = image.resize((w_original * upscale_factor, h_original * upscale_factor), Image.LANCZOS)
|
| 649 |
-
|
| 650 |
-
return image, seed, num_inference_steps, upscale_factor, controlnet_conditioning_scale, gr.update(), gr.update(visible=False)
|
| 651 |
-
except Exception as e:
|
| 652 |
-
print(f"Error in infer_upscale: {str(e)}")
|
| 653 |
-
import traceback
|
| 654 |
-
traceback.print_exc()
|
| 655 |
-
return None, seed, gr.update(), gr.update(), gr.update(), gr.update(), gr.update(visible=True, value=f"Error: {str(e)}")
|
| 656 |
-
|
| 657 |
-
def check_upscale_input(input_image, *args):
|
| 658 |
-
if input_image is None:
|
| 659 |
-
return gr.update(interactive=False), *args, gr.update(visible=True, value="Please upload an image for upscaling.")
|
| 660 |
-
return gr.update(interactive=True), *args, gr.update(visible=False)
|
| 661 |
-
|
| 662 |
with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css, delete_cache=(60, 3600)) as app:
|
| 663 |
loras_state = gr.State(loras)
|
| 664 |
selected_indices = gr.State([])
|
|
@@ -742,49 +621,6 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css, delete_cache=(60, 3600)) as a
|
|
| 742 |
randomize_seed = gr.Checkbox(True, label="Randomize seed")
|
| 743 |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
|
| 744 |
|
| 745 |
-
# 업스케일 관련 UI 추가
|
| 746 |
-
with gr.Row():
|
| 747 |
-
upscale_button = gr.Button("Upscale", interactive=False)
|
| 748 |
-
|
| 749 |
-
with gr.Row():
|
| 750 |
-
with gr.Column(scale=4):
|
| 751 |
-
upscale_input = gr.Image(label="Input Image for Upscaling", type="pil")
|
| 752 |
-
with gr.Column(scale=1):
|
| 753 |
-
upscale_steps = gr.Slider(
|
| 754 |
-
label="Number of Inference Steps for Upscaling",
|
| 755 |
-
minimum=8,
|
| 756 |
-
maximum=50,
|
| 757 |
-
step=1,
|
| 758 |
-
value=28,
|
| 759 |
-
)
|
| 760 |
-
upscale_factor = gr.Slider(
|
| 761 |
-
label="Upscale Factor",
|
| 762 |
-
minimum=1,
|
| 763 |
-
maximum=4,
|
| 764 |
-
step=1,
|
| 765 |
-
value=4,
|
| 766 |
-
)
|
| 767 |
-
controlnet_conditioning_scale = gr.Slider(
|
| 768 |
-
label="Controlnet Conditioning Scale",
|
| 769 |
-
minimum=0.1,
|
| 770 |
-
maximum=1.0,
|
| 771 |
-
step=0.05,
|
| 772 |
-
value=0.5, # 기본값을 0.5로 낮춤
|
| 773 |
-
)
|
| 774 |
-
upscale_seed = gr.Slider(
|
| 775 |
-
label="Seed for Upscaling",
|
| 776 |
-
minimum=0,
|
| 777 |
-
maximum=MAX_SEED,
|
| 778 |
-
step=1,
|
| 779 |
-
value=42,
|
| 780 |
-
)
|
| 781 |
-
upscale_randomize_seed = gr.Checkbox(label="Randomize seed for Upscaling", value=True)
|
| 782 |
-
upscale_error = gr.Markdown(visible=False, value="Please provide an input image for upscaling.")
|
| 783 |
-
|
| 784 |
-
with gr.Row():
|
| 785 |
-
upscale_result = gr.Image(label="Upscaled Image", type="pil")
|
| 786 |
-
upscale_seed_output = gr.Number(label="Seed Used", precision=0)
|
| 787 |
-
|
| 788 |
gallery.select(
|
| 789 |
update_selection,
|
| 790 |
inputs=[selected_indices, loras_state, width, height],
|
|
@@ -809,8 +645,6 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css, delete_cache=(60, 3600)) as a
|
|
| 809 |
outputs=[selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_image_1, lora_image_2, lora_image_3]
|
| 810 |
)
|
| 811 |
|
| 812 |
-
|
| 813 |
-
|
| 814 |
randomize_button.click(
|
| 815 |
randomize_loras,
|
| 816 |
inputs=[selected_indices, loras_state],
|
|
@@ -840,46 +674,6 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css, delete_cache=(60, 3600)) as a
|
|
| 840 |
outputs=history_gallery,
|
| 841 |
)
|
| 842 |
|
| 843 |
-
upscale_input.upload(
|
| 844 |
-
lambda x: gr.update(interactive=x is not None),
|
| 845 |
-
inputs=[upscale_input],
|
| 846 |
-
outputs=[upscale_button]
|
| 847 |
-
)
|
| 848 |
-
|
| 849 |
-
upscale_error = gr.Markdown(visible=False, value="")
|
| 850 |
-
|
| 851 |
-
upscale_button.click(
|
| 852 |
-
infer_upscale,
|
| 853 |
-
inputs=[
|
| 854 |
-
upscale_seed,
|
| 855 |
-
upscale_randomize_seed,
|
| 856 |
-
upscale_input,
|
| 857 |
-
upscale_steps,
|
| 858 |
-
upscale_factor,
|
| 859 |
-
controlnet_conditioning_scale,
|
| 860 |
-
],
|
| 861 |
-
outputs=[
|
| 862 |
-
upscale_result,
|
| 863 |
-
upscale_seed_output,
|
| 864 |
-
upscale_steps,
|
| 865 |
-
upscale_factor,
|
| 866 |
-
controlnet_conditioning_scale,
|
| 867 |
-
upscale_randomize_seed,
|
| 868 |
-
upscale_error
|
| 869 |
-
],
|
| 870 |
-
).then(
|
| 871 |
-
infer_upscale,
|
| 872 |
-
inputs=[
|
| 873 |
-
upscale_seed,
|
| 874 |
-
upscale_randomize_seed,
|
| 875 |
-
upscale_input,
|
| 876 |
-
upscale_steps,
|
| 877 |
-
upscale_factor,
|
| 878 |
-
controlnet_conditioning_scale,
|
| 879 |
-
],
|
| 880 |
-
outputs=[upscale_result, upscale_seed_output]
|
| 881 |
-
)
|
| 882 |
-
|
| 883 |
if __name__ == "__main__":
|
| 884 |
app.queue(max_size=20)
|
| 885 |
app.launch(debug=True)
|
|
|
|
| 5 |
import torch
|
| 6 |
from PIL import Image
|
| 7 |
import spaces
|
| 8 |
+
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL, AutoPipelineForImage2Image
|
|
|
|
| 9 |
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
|
| 10 |
from diffusers.utils import load_image
|
| 11 |
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
|
|
|
|
| 20 |
import warnings
|
| 21 |
|
| 22 |
|
| 23 |
+
huggingface_token = os.getenv("HF_TOKEN")
|
| 24 |
|
| 25 |
|
| 26 |
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en", device="cpu")
|
|
|
|
| 60 |
torch_dtype=dtype
|
| 61 |
).to(device)
|
| 62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
MAX_SEED = 2**32 - 1
|
| 64 |
MAX_PIXEL_BUDGET = 1024 * 1024
|
| 65 |
|
|
|
|
| 538 |
footer {visibility: hidden;}
|
| 539 |
'''
|
| 540 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 541 |
with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css, delete_cache=(60, 3600)) as app:
|
| 542 |
loras_state = gr.State(loras)
|
| 543 |
selected_indices = gr.State([])
|
|
|
|
| 621 |
randomize_seed = gr.Checkbox(True, label="Randomize seed")
|
| 622 |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
|
| 623 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 624 |
gallery.select(
|
| 625 |
update_selection,
|
| 626 |
inputs=[selected_indices, loras_state, width, height],
|
|
|
|
| 645 |
outputs=[selected_info_1, selected_info_2, selected_info_3, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_image_1, lora_image_2, lora_image_3]
|
| 646 |
)
|
| 647 |
|
|
|
|
|
|
|
| 648 |
randomize_button.click(
|
| 649 |
randomize_loras,
|
| 650 |
inputs=[selected_indices, loras_state],
|
|
|
|
| 674 |
outputs=history_gallery,
|
| 675 |
)
|
| 676 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 677 |
if __name__ == "__main__":
|
| 678 |
app.queue(max_size=20)
|
| 679 |
app.launch(debug=True)
|