datarefine2 / app.py
ghosthets's picture
Update app.py
bbb8747 verified
import gradio as gr
import requests
from bs4 import BeautifulSoup
from transformers import pipeline
# Load fast, open-access model
llm = pipeline("text2text-generation", model="google/flan-t5-base")
def extract_text(url):
response = requests.get(url, timeout=10)
soup = BeautifulSoup(response.text, "html.parser")
return soup.get_text(separator="\n")
def chunk_text(text, chunk_size=3000):
return [text[i:i+chunk_size] for i in range(0, len(text), chunk_size)]
def refine_chunk(chunk, instruction):
prompt = f"""
{instruction}
Content:
{chunk}
"""
result = llm(prompt, max_new_tokens=512)[0]["generated_text"]
return result
def streamed_pipeline(url, instruction):
try:
raw_text = extract_text(url)
chunks = chunk_text(raw_text)
for i, chunk in enumerate(chunks):
result = refine_chunk(chunk, instruction)
yield f"### Section {i+1}\n{result}\n\n"
except Exception as e:
yield f"Error: {str(e)}"
demo = gr.Interface(
fn=streamed_pipeline,
inputs=[
gr.Textbox(label="πŸ”— Enter Webpage URL"),
gr.Textbox(label="🧠 Instruction", placeholder="e.g. Clean and format this for GPT2 training")
],
outputs=gr.Textbox(label="πŸ“„ Streaming Output", lines=40, max_lines=80, interactive=False),
title="🧠 Real-Time Chunked Refiner",
description="Crawls full webpage, breaks into chunks, and streams refined output section-by-section using Flan-T5."
)
if __name__ == "__main__":
demo.launch()