Spaces:
Running
Running
| #!/usr/bin/env python3 | |
| # ========================================================== | |
| # FILE: ghostpack_gradio_f1.py | |
| # ========================================================== | |
| import os, sys, time, json, argparse, importlib.util, subprocess, traceback | |
| import torch, einops, numpy as np | |
| from PIL import Image | |
| import io | |
| import gradio as gr | |
| import asyncio | |
| from queue import Queue | |
| from threading import Thread, Event | |
| import re | |
| import logging | |
| from diffusers import AutoencoderKLHunyuanVideo | |
| from transformers import ( | |
| LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer, | |
| SiglipImageProcessor, SiglipVisionModel | |
| ) | |
| from diffusers_helper.hf_login import login | |
| from diffusers_helper.hunyuan import ( | |
| encode_prompt_conds, vae_decode, vae_encode, vae_decode_fake | |
| ) | |
| from diffusers_helper.utils import ( | |
| save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw, | |
| resize_and_center_crop, generate_timestamp | |
| ) | |
| from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked | |
| from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan | |
| from diffusers_helper.memory import ( | |
| gpu, get_cuda_free_memory_gb, move_model_to_device_with_memory_preservation, | |
| offload_model_from_device_for_memory_preservation, fake_diffusers_current_device, | |
| DynamicSwapInstaller, unload_complete_models, load_model_as_complete | |
| ) | |
| from diffusers_helper.clip_vision import hf_clip_vision_encode | |
| from diffusers_helper.bucket_tools import find_nearest_bucket | |
| # Set up logging | |
| logging.basicConfig(filename='/home/ubuntu/ghostpack/ghostpack.log', level=logging.ERROR, format='%(asctime)s %(levelname)s:%(message)s') | |
| # MODIFIED: Added version number | |
| VERSION = "1.0.0" | |
| # ------------------------- CLI ---------------------------- | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument('--share', action='store_true') | |
| parser.add_argument('--server', type=str, default='0.0.0.0') | |
| parser.add_argument('--port', type=int) | |
| parser.add_argument('--inbrowser', action='store_true') | |
| parser.add_argument('--cli', action='store_true') | |
| args = parser.parse_args() | |
| # MODIFIED: Global state variables | |
| render_progress = 0.0 | |
| render_status = "idle" | |
| render_times = [] | |
| stream = None | |
| start_render_time = None | |
| BASE = os.path.abspath(os.path.dirname(__file__)) | |
| os.environ['HF_HOME'] = os.path.join(BASE, 'hf_download') | |
| if args.cli: | |
| print("👻 GhostPack F1 Pro CLI\n") | |
| print("python ghostpack_gradio_f1.py # launch UI") | |
| print("python ghostpack_gradio_f1.py --cli # show help\n") | |
| sys.exit(0) | |
| # ---------------------- Paths ----------------------------- | |
| OUT_BASE = os.path.join('/home/ubuntu/ghostpack', 'outputs') | |
| OUT_IMG = os.path.join(OUT_BASE, 'img') | |
| OUT_TEMP = os.path.join(OUT_BASE, 'tmp') | |
| OUT_VID = os.path.join(OUT_BASE, 'vid') | |
| OUT_DATA = os.path.join(OUT_BASE, 'data') | |
| PROMPT_LOG = os.path.join(OUT_DATA, 'prompts.txt') | |
| SAVED_PROMPTS = os.path.join(OUT_DATA, 'saved_prompts.json') | |
| INSTALL_LOG = os.path.join(OUT_DATA, 'install_logs.txt') | |
| LAST_CLEANUP_FILE = os.path.join(OUT_DATA, 'last_cleanup.txt') | |
| VIDEO_INFO_JSON = os.path.join(OUT_DATA, 'video_info.json') | |
| # MODIFIED: Create directories and initialize files with permissions | |
| for d in (OUT_BASE, OUT_IMG, OUT_TEMP, OUT_VID, OUT_DATA): | |
| try: | |
| os.makedirs(d, exist_ok=True) | |
| os.chmod(d, 0o775) | |
| except Exception as e: | |
| logging.error(f"Failed to create/chmod directory {d}: {e}") | |
| if not os.path.exists(SAVED_PROMPTS): | |
| try: | |
| with open(SAVED_PROMPTS, 'w') as f: | |
| json.dump([], f) | |
| os.chmod(SAVED_PROMPTS, 0o664) | |
| except Exception as e: | |
| logging.error(f"Failed to create/chmod {SAVED_PROMPTS}: {e}") | |
| if not os.path.exists(INSTALL_LOG): | |
| try: | |
| open(INSTALL_LOG, 'w').close() | |
| os.chmod(INSTALL_LOG, 0o664) | |
| except Exception as e: | |
| logging.error(f"Failed to create/chmod {INSTALL_LOG}: {e}") | |
| if not os.path.exists(PROMPT_LOG): | |
| try: | |
| open(PROMPT_LOG, 'w').close() | |
| os.chmod(PROMPT_LOG, 0o664) | |
| except Exception as e: | |
| logging.error(f"Failed to create/chmod {PROMPT_LOG}: {e}") | |
| if not os.path.exists(LAST_CLEANUP_FILE): | |
| try: | |
| with open(LAST_CLEANUP_FILE, 'w') as f: | |
| f.write(str(time.time())) | |
| os.chmod(LAST_CLEANUP_FILE, 0o664) | |
| except Exception as e: | |
| logging.error(f"Failed to create/chmod {LAST_CLEANUP_FILE}: {e}") | |
| if not os.path.exists(VIDEO_INFO_JSON): | |
| try: | |
| with open(VIDEO_INFO_JSON, 'w') as f: | |
| json.dump([], f) | |
| os.chmod(VIDEO_INFO_JSON, 0o664) | |
| except Exception as e: | |
| logging.error(f"Failed to create/chmod {VIDEO_INFO_JSON}: {e}") | |
| # ---------------- Prompt utils --------------------------- | |
| def get_last_prompts(): | |
| try: | |
| return json.load(open(SAVED_PROMPTS))[-5:][::-1] | |
| except Exception as e: | |
| logging.error(f"Failed to load prompts from {SAVED_PROMPTS}: {e}") | |
| return [] | |
| def save_prompt_fn(prompt, n_p): | |
| if not prompt: | |
| return "❌ No prompt" | |
| try: | |
| data = json.load(open(SAVED_PROMPTS)) | |
| entry = {'prompt': prompt, 'negative': n_p} | |
| if entry not in data: | |
| data.append(entry) | |
| with open(SAVED_PROMPTS, 'w') as f: | |
| json.dump(data, f) | |
| os.chmod(SAVED_PROMPTS, 0o664) | |
| return "✅ Saved" | |
| except Exception as e: | |
| logging.error(f"Failed to save prompt to {SAVED_PROMPTS}: {e}") | |
| return "❌ Save failed" | |
| def load_prompt_fn(idx): | |
| lst = get_last_prompts() | |
| return lst[idx]['prompt'] if idx < len(lst) else "" | |
| # ---------------- Cleanup utils -------------------------- | |
| def clear_temp_videos(): | |
| try: | |
| for f in os.listdir(OUT_TEMP): | |
| os.remove(os.path.join(OUT_TEMP, f)) | |
| return "✅ Temp cleared" | |
| except Exception as e: | |
| logging.error(f"Failed to clear temp videos in {OUT_TEMP}: {e}") | |
| return "❌ Clear failed" | |
| def clear_old_files(): | |
| cutoff = time.time() - 7 * 24 * 3600 | |
| c = 0 | |
| try: | |
| for d in (OUT_TEMP, OUT_IMG, OUT_VID, OUT_DATA): | |
| for f in os.listdir(d): | |
| p = os.path.join(d, f) | |
| if os.path.isfile(p) and os.path.getmtime(p) < cutoff: | |
| os.remove(p) | |
| c += 1 | |
| with open(LAST_CLEANUP_FILE, 'w') as f: | |
| f.write(str(time.time())) | |
| os.chmod(LAST_CLEANUP_FILE, 0o664) | |
| return f"✅ {c} old files removed" | |
| except Exception as e: | |
| logging.error(f"Failed to clear old files: {e}") | |
| return "❌ Clear failed" | |
| def clear_images(): | |
| try: | |
| for f in os.listdir(OUT_IMG): | |
| os.remove(os.path.join(OUT_IMG, f)) | |
| return "✅ Images cleared" | |
| except Exception as e: | |
| logging.error(f"Failed to clear images in {OUT_IMG}: {e}") | |
| return "❌ Clear failed" | |
| def clear_videos(): | |
| try: | |
| for f in os.listdir(OUT_VID): | |
| os.remove(os.path.join(OUT_VID, f)) | |
| return "✅ Videos cleared" | |
| except Exception as e: | |
| logging.error(f"Failed to clear videos in {OUT_VID}: {e}") | |
| return "❌ Clear failed" | |
| def check_and_run_weekly_cleanup(): | |
| try: | |
| with open(LAST_CLEANUP_FILE, 'r') as f: | |
| last_cleanup = float(f.read().strip()) | |
| except (FileNotFoundError, ValueError): | |
| last_cleanup = 0 | |
| if time.time() - last_cleanup > 7 * 24 * 3600: | |
| return clear_old_files() | |
| return "" | |
| # ---------------- Gallery helpers ------------------------ | |
| def list_images(): | |
| return sorted( | |
| [os.path.join(OUT_IMG, f) for f in os.listdir(OUT_IMG) if f.lower().endswith(('.png', '.jpg'))], | |
| key=os.path.getmtime | |
| ) | |
| def list_videos(): | |
| return sorted( | |
| [os.path.join(OUT_VID, f) for f in os.listdir(OUT_VID) if f.lower().endswith('.mp4')], | |
| key=os.path.getmtime | |
| ) | |
| def load_image(sel): | |
| imgs = list_images() | |
| if sel in [os.path.basename(p) for p in imgs]: | |
| pth = imgs[[os.path.basename(p) for p in imgs].index(sel)] | |
| return gr.update(value=pth), gr.update(value=os.path.basename(pth)) | |
| return gr.update(), gr.update() | |
| def load_video(sel): | |
| vids = list_videos() | |
| if sel in [os.path.basename(p) for p in vids]: | |
| pth = vids[[os.path.basename(p) for p in vids].index(sel)] | |
| return gr.update(value=pth), gr.update(value=os.path.basename(pth)) | |
| return gr.update(), gr.update() | |
| def next_image_and_load(sel): | |
| imgs = list_images() | |
| if not imgs: | |
| return gr.update(), gr.update() | |
| names = [os.path.basename(i) for i in imgs] | |
| idx = (names.index(sel) + 1) % len(names) if sel in names else 0 | |
| pth = imgs[idx] | |
| return gr.update(value=pth), gr.update(value=os.path.basename(pth)) | |
| def next_video_and_load(sel): | |
| vids = list_videos() | |
| if not vids: | |
| return gr.update(), gr.update() | |
| names = [os.path.basename(v) for v in vids] | |
| idx = (names.index(sel) + 1) % len(names) if sel in names else 0 | |
| pth = vids[idx] | |
| return gr.update(value=pth), gr.update(value=os.path.basename(pth)) | |
| def gallery_image_select(evt: gr.SelectData): | |
| imgs = list_images() | |
| if evt.index is not None and evt.index < len(imgs): | |
| pth = imgs[evt.index] | |
| return gr.update(value=pth), gr.update(value=os.path.basename(pth)) | |
| return gr.update(), gr.update() | |
| def gallery_video_select(evt: gr.SelectData): | |
| vids = list_videos() | |
| if evt.index is not None and evt.index < len(vids): | |
| pth = vids[evt.index] | |
| return gr.update(value=pth), gr.update(value=os.path.basename(pth)) | |
| return gr.update(), gr.update() | |
| # ---------------- Install status ------------------------- | |
| def check_mod(n): return importlib.util.find_spec(n) is not None | |
| def status_xformers(): return "✅ xformers" if check_mod("xformers") else "❌ xformers" | |
| def status_sage(): return "✅ sage-attn" if check_mod("sageattention") else "❌ sage-attn" | |
| def status_flash(): return "✅ flash-attn" if check_mod("flash_attn") else "⚠️ flash-attn" | |
| def install_pkg(pkg, warn=None): | |
| if warn: | |
| print(warn) | |
| time.sleep(1) | |
| try: | |
| out = subprocess.check_output( | |
| [sys.executable, "-m", "pip", "install", pkg], | |
| stderr=subprocess.STDOUT, text=True | |
| ) | |
| res = f"✅ {pkg}\n{out}\n" | |
| except subprocess.CalledProcessError as e: | |
| res = f"❌ {pkg}\n{e.output}\n" | |
| with open(INSTALL_LOG, 'a') as f: | |
| f.write(f"[{pkg}] {res}") | |
| return res | |
| install_xformers = lambda: install_pkg("xformers") | |
| install_sage_attn = lambda: install_pkg("sage-attn") | |
| install_flash_attn = lambda: install_pkg("flash-attn", "⚠️ long compile") | |
| refresh_logs = lambda: open(INSTALL_LOG).read() | |
| clear_logs = lambda: (open(INSTALL_LOG, 'w').close() or "✅ Logs cleared") | |
| # ---------------- Model load ----------------------------- | |
| free_mem = get_cuda_free_memory_gb(gpu) | |
| hv = free_mem > 60 | |
| try: | |
| text_encoder = LlamaModel.from_pretrained( | |
| "hunyuanvideo-community/HunyuanVideo", | |
| subfolder='text_encoder', torch_dtype=torch.float16 | |
| ).cpu().eval() | |
| text_encoder_2 = CLIPTextModel.from_pretrained( | |
| "hunyuanvideo-community/HunyuanVideo", | |
| subfolder='text_encoder_2', torch_dtype=torch.float16 | |
| ).cpu().eval() | |
| tokenizer = LlamaTokenizerFast.from_pretrained( | |
| "hunyuanvideo-community/HunyuanVideo", | |
| subfolder='tokenizer' | |
| ) | |
| tokenizer_2 = CLIPTokenizer.from_pretrained( | |
| "hunyuanvideo-community/HunyuanVideo", | |
| subfolder='tokenizer_2' | |
| ) | |
| vae = AutoencoderKLHunyuanVideo.from_pretrained( | |
| "hunyuanvideo-community/HunyuanVideo", | |
| subfolder='vae', torch_dtype=torch.float16 | |
| ).cpu().eval() | |
| feature_extractor = SiglipImageProcessor.from_pretrained( | |
| "lllyasviel/flux_redux_bfl", subfolder='feature_extractor' | |
| ) | |
| image_encoder = SiglipVisionModel.from_pretrained( | |
| "lllyasviel/flux_redux_bfl", | |
| subfolder='image_encoder', torch_dtype=torch.float16 | |
| ).cpu().eval() | |
| transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained( | |
| "lllyasviel/FramePack_F1_I2V_HY_20250503", | |
| torch_dtype=torch.bfloat16 | |
| ).cpu().eval() | |
| except Exception as e: | |
| logging.error(f"Failed to load models: {e}") | |
| raise | |
| if not hv: | |
| vae.enable_slicing() | |
| vae.enable_tiling() | |
| transformer.high_quality_fp32_output_for_inference = True | |
| transformer.to(dtype=torch.bfloat16) | |
| for m in (vae, image_encoder, text_encoder, text_encoder_2): | |
| m.to(dtype=torch.float16) | |
| for m in (vae, image_encoder, text_encoder, text_encoder_2, transformer): | |
| m.requires_grad_(False) | |
| if not hv: | |
| DynamicSwapInstaller.install_model(transformer, device=gpu) | |
| DynamicSwapInstaller.install_model(text_encoder, device=gpu) | |
| else: | |
| for m in (text_encoder, text_encoder_2, image_encoder, vae, transformer): | |
| m.to(gpu) | |
| class AsyncStream: | |
| def __init__(self): | |
| self.input_queue = Queue() | |
| self.output_queue = Queue() | |
| self.stop_event = Event() | |
| def put(self, item): | |
| self.output_queue.put(item) | |
| def get(self): | |
| return self.output_queue.get() | |
| def is_stopped(self): | |
| return self.stop_event.is_set() | |
| def stop(self): | |
| self.stop_event.set() | |
| self.input_queue.put("end") | |
| # ---------------- Worker ------------------------------- | |
| def worker(img, prompt, n_p, seed, secs, win, stp, cfg, gsc, rsc, keep, tea, crf, camera_action="Static Camera"): | |
| global render_progress, render_status, render_times, start_render_time, stream | |
| start_render_time = time.time() | |
| render_status = "rendering" | |
| render_progress = 0.0 | |
| stream = AsyncStream() | |
| # Validate prompt for smoothness, stop, and silence, and append camera action | |
| if "stop" not in prompt.lower() and secs > 5: | |
| prompt += " The subject stops moving after 5 seconds." | |
| if "smooth" not in prompt.lower(): | |
| prompt = f"Smooth animation: {prompt}" | |
| if "silent" not in prompt.lower(): | |
| prompt += ", silent" | |
| prompt = update_prompt(prompt, camera_action) | |
| if len(prompt.split()) > 50: | |
| print("Warning: Complex prompt may slow rendering or cause instability.") | |
| # Check VRAM availability | |
| if get_cuda_free_memory_gb(gpu) < 2: | |
| render_status = "error" | |
| logging.error("Low VRAM (<2GB). Lower 'kee' or 'win'.") | |
| raise Exception("Low VRAM (<2GB). Lower 'kee' or 'win'.") | |
| sections = max(round((secs * 30) / (win * 4)), 1) | |
| jid = generate_timestamp() | |
| try: | |
| with open(PROMPT_LOG, 'a') as f: | |
| f.write(f"{jid}\t{prompt}\t{n_p}\n") | |
| os.chmod(PROMPT_LOG, 0o664) | |
| except Exception as e: | |
| logging.error(f"Failed to write to {PROMPT_LOG}: {e}") | |
| stream.put(('progress', (None, "", ProgressBar().make_progress_bar_html(0, "Start")))) | |
| try: | |
| if not hv: | |
| unload_complete_models(text_encoder, text_encoder_2, image_encoder, vae, transformer) | |
| fake_diffusers_current_device(text_encoder, gpu) | |
| load_model_as_complete(text_encoder_2, gpu) | |
| lv, cp = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2) | |
| if cfg == 1: | |
| lv_n = torch.zeros_like(lv) | |
| cp_n = torch.zeros_like(cp) | |
| else: | |
| lv_n, cp_n = encode_prompt_conds(n_p, text_encoder, text_encoder_2, tokenizer, tokenizer_2) | |
| lv, m = crop_or_pad_yield_mask(lv, 512) | |
| lv_n, m_n = crop_or_pad_yield_mask(lv_n, 512) | |
| lv, cp, lv_n, cp_n = [x.to(torch.bfloat16) for x in (lv, cp, lv_n, cp_n)] | |
| H, W, _ = img.shape | |
| h, w = find_nearest_bucket(H, W, 640) | |
| img_np = resize_and_center_crop(img, w, h) | |
| img_filename = f"{jid}.png" | |
| try: | |
| Image.fromarray(img_np).save(os.path.join(OUT_IMG, img_filename)) | |
| os.chmod(os.path.join(OUT_IMG, img_filename), 0o664) | |
| except Exception as e: | |
| logging.error(f"Failed to save image {img_filename}: {e}") | |
| raise | |
| img_pt = (torch.from_numpy(img_np).float() / 127.5 - 1).permute(2, 0, 1)[None, :, None] | |
| if not hv: | |
| load_model_as_complete(vae, gpu) | |
| start_lat = vae_encode(img_pt, vae) | |
| if not hv: | |
| load_model_as_complete(image_encoder, gpu) | |
| img_emb = hf_clip_vision_encode(img_np, feature_extractor, image_encoder).last_hidden_state.to(torch.bfloat16) | |
| gen = torch.Generator("cpu").manual_seed(seed) | |
| hist_lat = torch.zeros((1, 16, 1 + 2 + 16, h // 8, w // 8), dtype=torch.float32).cpu() | |
| hist_px = None | |
| total = 0 | |
| pad_seq = [3] + [2] * (sections - 3) + [1, 0] if sections > 4 else list(reversed(range(sections))) | |
| section_index = 0 | |
| for pad in pad_seq: | |
| if stream.is_stopped(): | |
| render_status = "stopped" | |
| stream.put(("stopped", None)) | |
| return None | |
| last = pad == 0 | |
| pad_sz = pad * win | |
| idx = torch.arange(0, sum([1, pad_sz, win, 1, 2, 16]))[None] | |
| a, b, c, d, e, f = idx.split([1, pad_sz, win, 1, 2, 16], 1) | |
| clean_idx = torch.cat([a, d], 1) | |
| pre = start_lat.to(hist_lat) | |
| post, two, four = hist_lat[:, :, :1 + 2 + 16].split([1, 2, 16], 2) | |
| clean = torch.cat([pre, post], 2) | |
| if not hv: | |
| unload_complete_models() | |
| move_model_to_device_with_memory_preservation(transformer, gpu, keep) | |
| transformer.initialize_teacache(tea, stp) | |
| def cb(d): | |
| global render_progress | |
| pv = vae_decode_fake(d["denoised"]) | |
| pv = (pv * 255).cpu().numpy().clip(0, 255).astype(np.uint8) | |
| pv = einops.rearrange(pv, "b c t h w->(b h)(t w)c") | |
| cur = d["i"] + 1 | |
| render_progress = (cur / stp) * 100 | |
| stream.put(('progress', (pv, f"{cur}/{stp}", ProgressBar().make_progress_bar_html(int(100 * cur / stp), f"{cur}/{stp}")))) | |
| if stream.is_stopped(): | |
| stream.put(("stopped", None)) | |
| raise KeyboardInterrupt | |
| new_lat = sample_hunyuan( | |
| transformer=transformer, sampler="unipc", width=w, height=h, frames=win * 4 - 3, | |
| real_guidance_scale=cfg, distilled_guidance_scale=gsc, guidance_rescale=rsc, | |
| num_inference_steps=stp, generator=gen, | |
| prompt_embeds=lv, prompt_embeds_mask=m, prompt_poolers=cp, | |
| negative_prompt_embeds=lv_n, negative_prompt_embeds_mask=m_n, negative_prompt_poolers=cp_n, | |
| device=gpu, dtype=torch.bfloat16, image_embeddings=img_emb, | |
| latent_indices=c, clean_latents=clean, clean_latent_indices=clean_idx, | |
| clean_latents_2x=two, clean_latent_2x_indices=e, | |
| clean_latents_4x=four, clean_latent_4x_indices=f, callback=cb | |
| ) | |
| if last: | |
| new_lat = torch.cat([start_lat.to(new_lat), new_lat], 2) | |
| total += new_lat.shape[2] | |
| hist_lat = torch.cat([new_lat.to(hist_lat), hist_lat], 2) | |
| if not hv: | |
| offload_model_from_device_for_memory_preservation(transformer, gpu, 8) | |
| load_model_as_complete(vae, gpu) | |
| real = hist_lat[:, :, :total] | |
| if hist_px is None: | |
| hist_px = vae_decode(real, vae).cpu() | |
| else: | |
| overlap = win * 4 - 3 | |
| curr = vae_decode(real[:, :, :win * 2], vae).cpu() | |
| hist_px = soft_append_bcthw(curr, hist_px, overlap) | |
| if not hv: | |
| unload_complete_models() | |
| tmp_filename = f"{jid}_{total}.mp4" | |
| tmp = os.path.join(OUT_TEMP, tmp_filename) | |
| try: | |
| save_bcthw_as_mp4(hist_px, tmp, fps=30, crf=crf) | |
| os.chmod(tmp, 0o664) | |
| except Exception as e: | |
| logging.error(f"Failed to save video {tmp}: {e}") | |
| raise | |
| stream.put(('file', tmp)) | |
| section_index += 1 | |
| if last: | |
| fin_filename = f"{jid}_{total}.mp4" | |
| fin = os.path.join(OUT_VID, fin_filename) | |
| try: | |
| os.replace(tmp, fin) | |
| os.chmod(fin, 0o664) | |
| save_video_info(prompt, n_p, fin_filename, seed, secs, None) | |
| stream.put(('complete', fin)) | |
| render_status = "complete" | |
| end_time = time.time() | |
| render_time = end_time - start_render_time | |
| render_times.append(render_time) | |
| if len(render_times) > 3: | |
| render_times.pop(0) | |
| return fin | |
| except Exception as e: | |
| logging.error(f"Failed to finalize video {fin}: {e}") | |
| raise | |
| except Exception as e: | |
| traceback.print_exc() | |
| render_status = "error" | |
| stream.put(("stopped", str(e))) | |
| logging.error(f"Worker failed: {e}") | |
| return None | |
| finally: | |
| render_progress = 0.0 | |
| start_render_time = None | |
| def process(img, prm, npr, sd, sec, win, stp, cfg, gsc, rsc, kee, tea, crf): | |
| global stream | |
| if img is None: | |
| yield None, None, "Please upload an image to proceed.", "", gr.update(interactive=False), gr.update(interactive=True) | |
| return | |
| yield None, None, "", "", gr.update(interactive=False), gr.update(interactive=True) | |
| loop = asyncio.new_event_loop() | |
| asyncio.set_event_loop(loop) | |
| try: | |
| future = loop.run_in_executor(None, lambda: worker(img, prm, npr, sd, sec, win, stp, cfg, gsc, rsc, kee, tea, crf)) | |
| out, log = None, "" | |
| while True: | |
| try: | |
| if stream and not stream.output_queue.empty(): | |
| flag, data = stream.get() | |
| if flag == "file": | |
| out = data | |
| yield out, gr.update(), gr.update(), log, gr.update(interactive=False), gr.update(interactive=True) | |
| elif flag == "progress": | |
| pv, desc, html = data | |
| log = desc | |
| yield gr.update(), gr.update(visible=True, value=pv), desc, html, gr.update(interactive=False), gr.update(interactive=True) | |
| elif flag in ("complete", "stopped", "end"): | |
| yield out, gr.update(visible=False), gr.update(), "", gr.update(interactive=True), gr.update(interactive=False) | |
| break | |
| except Exception as e: | |
| logging.error(f"Error in process queue: {e}") | |
| yield None, gr.update(visible=False), "Error occurred during processing.", "", gr.update(interactive=True), gr.update(interactive=False) | |
| break | |
| finally: | |
| loop.close() | |
| def end_process(): | |
| if stream: | |
| stream.stop() | |
| # ------------------- UI ------------------------------ | |
| quick_prompts = [ | |
| ["Smooth animation: A character waves for 3 seconds, then stands still for 2 seconds, static camera, silent."], | |
| ["Smooth animation: A character moves for 5 seconds, static camera, silent."] | |
| ] | |
| css = """ | |
| .orange-button{background:#ff6200;color:#fff;border-color:#ff6200;} | |
| .load-button{background:#4CAF50;color:#fff;border-color:#4CAF50;margin-left:10px;} | |
| .big-setting-button{background:#0066cc;color:#fff;border:none;padding:14px 24px;font-size:18px;width:100%;border-radius:6px;margin:8px 0;} | |
| .styled-dropdown{width:250px;padding:5px;border-radius:4px;} | |
| .viewer-column{width:100%;max-width:900px;margin:0 auto;} | |
| .media-preview img,.media-preview video{max-width:100%;height:380px;object-fit:contain;border:1px solid #444;border-radius:6px;} | |
| .media-container{display:flex;gap:20px;align-items:flex-start;} | |
| .control-box{min-width:220px;} | |
| .control-grid{display:grid;grid-template-columns:1fr 1fr;gap:10px;} | |
| .image-gallery{display:grid!important;grid-template-columns:repeat(auto-fit,minmax(300px,1fr))!important;gap:10px;padding:10px!important;overflow-y:auto!important;max-height:360px!important;} | |
| .image-gallery .gallery-item{padding:10px;height:360px!important;width:300px!important;} | |
| .image-gallery img{object-fit:contain;height:360px!important;width:300px!important;} | |
| .video-gallery{display:grid!important;grid-template-columns:repeat(auto-fit,minmax(300px,1fr))!important;gap:10px;padding:10px!important;overflow-y:auto!important;max-height:360px!important;} | |
| .video-gallery .gallery-item{padding:10px;height:360px!important;width:300px!important;} | |
| .video-gallery video{object-fit:contain;height:360px!important;width:300px!important;} | |
| .stop-button {background-color: #ff4d4d !important; color: white !important;} | |
| .progress-bar { | |
| width: 100%; | |
| height: 20px; | |
| background-color: #444; | |
| border-radius: 10px; | |
| overflow: hidden; | |
| } | |
| .progress-bar-fill { | |
| height: 100%; | |
| background-color: #ff6200; | |
| border-radius: 10px; | |
| transition: width 0.3s ease-in-out; | |
| } | |
| """ | |
| blk = gr.Blocks(css=css, title="GhostPack F1 Pro").queue() | |
| with blk: | |
| gr.Markdown("# 👻 GhostPack F1 Pro") | |
| with gr.Tabs(): | |
| with gr.TabItem("👻 Generate"): | |
| with gr.Row(): | |
| with gr.Column(): | |
| img_in = gr.Image(sources="upload", type="numpy", label="Image", height=320) | |
| generate_button = gr.Button("Generate Video", elem_id="generate_button") | |
| stop_button = gr.Button("Stop Generation", elem_id="stop_button", elem_classes="stop-button") | |
| prm = gr.Textbox( | |
| label="Prompt", | |
| value="Smooth animation: A female stands with subtle, sensual micro-movements, breathing gently, slight head tilt, static camera, silent", | |
| elem_id="prompt_input" | |
| ) | |
| npr = gr.Textbox( | |
| label="Negative Prompt", | |
| value="low quality, blurry, speaking, talking, moaning, vocalizing, lip movement, mouth animation, sound, dialogue, speech, whispering, shouting, lip sync, facial animation, expressive face, verbal expression, animated mouth", | |
| elem_id="negative_prompt_input" | |
| ) | |
| save_msg = gr.Markdown("") | |
| btn_save = gr.Button("Save Prompt") | |
| btn1, btn2, btn3 = gr.Button("Load Most Recent"), gr.Button("Load 2nd Recent"), gr.Button("Load 3rd Recent") | |
| ds = gr.Dataset(samples=quick_prompts, label="Quick List", components=[prm]) | |
| ds.click(lambda x: x[0], [ds], [prm]) | |
| btn_save.click(save_prompt_fn, [prm, npr], [save_msg]) | |
| btn1.click(lambda: load_prompt_fn(0), [], [prm]) | |
| btn2.click(lambda: load_prompt_fn(1), [], [prm]) | |
| btn3.click(lambda: load_prompt_fn(2), [], [prm]) | |
| with gr.Column(): | |
| pv = gr.Image(label="Next Latents", height=200, visible=False) | |
| vid = gr.Video(label="Finished", autoplay=True, height=500, loop=True, show_share_button=False) | |
| log_md = gr.Markdown("") | |
| bar = gr.HTML("") | |
| with gr.Column(): | |
| se = gr.Number(label="Seed", value=31337, precision=0, elem_id="seed_input") | |
| sec = gr.Slider(label="Video Length (s)", minimum=1, maximum=120, value=5, step=0.1, elem_id="video_length_input") | |
| win = gr.Slider(label="Latent Window", minimum=1, maximum=33, value=5, step=1, elem_id="latent_window_input") | |
| stp = gr.Slider(label="Steps", minimum=1, maximum=100, value=12, step=1, elem_id="steps_input") | |
| cfg = gr.Slider(label="CFG", minimum=1, maximum=32, value=1, step=0.01, elem_id="cfg_input", visible=False) | |
| gsc = gr.Slider(label="Distilled CFG", minimum=1, maximum=32, value=7, step=0.1, elem_id="distilled_cfg_input") | |
| rsc = gr.Slider(label="CFG Re-Scale", minimum=0, maximum=1, value=0.7, step=0.01, elem_id="cfg_rescale_input") | |
| kee = gr.Slider(label="GPU Keep (GB)", minimum=4, maximum=free_mem, value=6, step=0.1, elem_id="gpu_keep_input") | |
| crf = gr.Slider(label="MP4 CRF", minimum=0, maximum=100, value=20, step=1, elem_id="mp4_crf_input") | |
| tea = gr.Checkbox(label="Use TeaCache", value=True, elem_id="use_teacache_input") | |
| generate_button.click( | |
| fn=process, | |
| inputs=[img_in, prm, npr, se, sec, win, stp, cfg, gsc, rsc, kee, tea, crf], | |
| outputs=[vid, pv, log_md, bar, generate_button, stop_button] | |
| ) | |
| stop_button.click(fn=end_process) | |
| gr.Button("Update Progress").click( | |
| fn=get_progress, | |
| outputs=[log_md, bar] | |
| ) | |
| with gr.TabItem("🖼️ Image Gallery"): | |
| with gr.Row(elem_classes="media-container"): | |
| with gr.Column(scale=3): | |
| image_preview = gr.Image( | |
| label="Viewer", | |
| value=(list_images()[0] if list_images() else None), | |
| interactive=False, elem_classes="media-preview" | |
| ) | |
| with gr.Column(elem_classes="control-box"): | |
| image_dropdown = gr.Dropdown( | |
| choices=[os.path.basename(i) for i in list_images()], | |
| value=(os.path.basename(list_images()[0]) if list_images() else None), | |
| label="Select", elem_classes="styled-dropdown" | |
| ) | |
| with gr.Row(elem_classes="control-grid"): | |
| load_btn = gr.Button("Load", elem_classes="load-button") | |
| next_btn = gr.Button("Next", elem_classes="load-button") | |
| with gr.Row(elem_classes="control-grid"): | |
| refresh_btn = gr.Button("Refresh") | |
| delete_btn = gr.Button("Delete", elem_classes="orange-button") | |
| image_gallery = gr.Gallery( | |
| value=list_images(), label="Thumbnails", columns=6, height=360, | |
| allow_preview=False, type="filepath", elem_classes="image-gallery" | |
| ) | |
| load_btn.click(load_image, [image_dropdown], [image_preview, image_dropdown]) | |
| next_btn.click(next_image_and_load, [image_dropdown], [image_preview, image_dropdown]) | |
| refresh_btn.click( | |
| lambda: ( | |
| gr.update(choices=[os.path.basename(i) for i in list_images()], | |
| value=os.path.basename(list_images()[0]) if list_images() else None), | |
| gr.update(value=list_images()[0] if list_images() else None), | |
| gr.update(value=list_images()) | |
| ), | |
| [], | |
| [image_dropdown, image_preview, image_gallery] | |
| ) | |
| delete_btn.click( | |
| lambda sel: (os.remove(os.path.join(OUT_IMG, sel)) if sel else None) or load_image(""), | |
| [image_dropdown], | |
| [image_preview, image_dropdown] | |
| ) | |
| image_gallery.select(gallery_image_select, [], [image_preview, image_dropdown]) | |
| with gr.TabItem("🎬 Video Gallery"): | |
| with gr.Row(elem_classes="media-container"): | |
| with gr.Column(scale=3): | |
| video_preview = gr.Video( | |
| label="Viewer", | |
| value=(list_videos()[0] if list_videos() else None), | |
| autoplay=True, loop=True, interactive=False, elem_classes="media-preview" | |
| ) | |
| with gr.Column(elem_classes="control-box"): | |
| video_dropdown = gr.Dropdown( | |
| choices=[os.path.basename(v) for v in list_videos()], | |
| value=(os.path.basename(list_videos()[0]) if list_videos() else None), | |
| label="Select", elem_classes="styled-dropdown" | |
| ) | |
| with gr.Row(elem_classes="control-grid"): | |
| load_vbtn = gr.Button("Load", elem_classes="load-button") | |
| next_vbtn = gr.Button("Next", elem_classes="load-button") | |
| with gr.Row(elem_classes="control-grid"): | |
| refresh_v = gr.Button("Refresh") | |
| delete_v = gr.Button("Delete", elem_classes="orange-button") | |
| video_gallery = gr.Gallery( | |
| value=list_videos(), label="Thumbnails", columns=6, height=360, | |
| allow_preview=False, type="filepath", elem_classes="video-gallery" | |
| ) | |
| load_vbtn.click(load_video, [video_dropdown], [video_preview, video_dropdown]) | |
| next_vbtn.click(next_video_and_load, [video_dropdown], [video_preview, video_dropdown]) | |
| refresh_v.click( | |
| lambda: ( | |
| gr.update(choices=[os.path.basename(v) for v in list_videos()], | |
| value=os.path.basename(list_videos()[0]) if list_videos() else None), | |
| gr.update(value=list_videos()[0] if list_videos() else None), | |
| gr.update(value=list_videos()) | |
| ), | |
| [], | |
| [video_dropdown, video_preview, video_gallery] | |
| ) | |
| delete_v.click( | |
| lambda sel: (os.remove(os.path.join(OUT_VID, sel)) if sel else None) or load_video(""), | |
| [video_dropdown], | |
| [video_preview, video_dropdown] | |
| ) | |
| video_gallery.select(gallery_video_select, [], [video_preview, video_dropdown]) | |
| with gr.TabItem("👻 About"): | |
| gr.Markdown("## GhostPack F1 Pro") | |
| with gr.Row(): | |
| with gr.Column(): | |
| gr.Markdown("**🛠️ Description**\nImage-to-Video toolkit powered by HunyuanVideo & FramePack-F1") | |
| with gr.Column(): | |
| gr.Markdown(f"**📦 Version**\n{VERSION}") | |
| with gr.Column(): | |
| gr.Markdown("**✍️ Author**\nGhostAI") | |
| with gr.Column(): | |
| gr.Markdown("**🔗 Repo**\nhttps://huggingface.co/spaces/ghostai1/GhostPack") | |
| with gr.TabItem("⚙️ Settings"): | |
| ct = gr.Button("Clear Temp", elem_classes="big-setting-button") | |
| ctmsg = gr.Markdown("") | |
| co = gr.Button("Clear Old", elem_classes="big-setting-button") | |
| comsg = gr.Markdown("") | |
| ci = gr.Button("Clear Images", elem_classes="big-setting-button") | |
| cimg = gr.Markdown("") | |
| cv = gr.Button("Clear Videos", elem_classes="big-setting-button") | |
| cvid = gr.Markdown("") | |
| ct.click(clear_temp_videos, [], ctmsg) | |
| co.click(clear_old_files, [], comsg) | |
| ci.click(clear_images, [], cimg) | |
| cv.click(clear_videos, [], cvid) | |
| with gr.TabItem("🛠️ Install"): | |
| xs = gr.Textbox(value=status_xformers(), interactive=False, label="xformers") | |
| bx = gr.Button("Install xformers", elem_classes="big-setting-button") | |
| ss = gr.Textbox(value=status_sage(), interactive=False, label="sage-attn") | |
| bs = gr.Button("Install sage-attn", elem_classes="big-setting-button") | |
| fs = gr.Textbox(value=status_flash(), interactive=False, label="flash-attn") | |
| bf = gr.Button("Install flash-attn", elem_classes="big-setting-button") | |
| bx.click(install_xformers, [], xs) | |
| bs.click(install_sage_attn, [], ss) | |
| bf.click(install_flash_attn, [], fs) | |
| with gr.TabItem("📜 Logs"): | |
| logs = gr.Textbox(lines=20, interactive=False, label="Install Logs") | |
| rl = gr.Button("Refresh", elem_classes="big-setting-button") | |
| cl = gr.Button("Clear", elem_classes="big-setting-button") | |
| rl.click(refresh_logs, [], logs) | |
| cl.click(clear_logs, [], logs) | |
| # Force video previews to seek to 2s | |
| gr.HTML(""" | |
| <script> | |
| document.querySelectorAll('.video-gallery video').forEach(v => { | |
| v.addEventListener('loadedmetadata', () => { | |
| if (v.duration > 2) v.currentTime = 2; | |
| }); | |
| }); | |
| </script> | |
| """) | |
| # Camera action update | |
| camera_action_input = gr.Dropdown( | |
| choices=[ | |
| "Static Camera", | |
| "Slight Orbit Left", | |
| "Slight Orbit Right", | |
| "Slight Orbit Up", | |
| "Slight Orbit Down", | |
| "Top-Down View", | |
| "Slight Zoom In", | |
| "Slight Zoom Out" | |
| ], | |
| label="Camera Action", | |
| value="Static Camera", | |
| elem_id="camera_action_input", | |
| info="Select a camera movement to append to the prompt." | |
| ) | |
| camera_action_input.change( | |
| fn=lambda prompt, camera_action: update_prompt(prompt, camera_action), | |
| inputs=[prm, camera_action_input], | |
| outputs=prm | |
| ) | |
| def update_prompt(prompt, camera_action): | |
| # Remove existing camera action from prompt | |
| camera_actions = [ | |
| "static camera", "slight camera orbit left", "slight camera orbit right", | |
| "slight camera orbit up", "slight camera orbit down", "top-down view", | |
| "slight camera zoom in", "slight camera zoom out" | |
| ] | |
| for action in camera_actions: | |
| prompt = re.sub(rf',\s*{re.escape(action)}\b', '', prompt, flags=re.IGNORECASE).strip() | |
| # Append selected camera action | |
| if camera_action and camera_action != "None": | |
| camera_phrase = f", {camera_action.lower()}" | |
| if len(prompt.split()) + len(camera_phrase.split()) <= 50: | |
| return prompt + camera_phrase | |
| else: | |
| logging.warning(f"Prompt exceeds 50 words after adding camera action: {prompt}") | |
| return prompt | |
| def get_progress(): | |
| markdown_text = f"Status: {render_status}\nProgress: {render_progress:.1f}%\nLast Render Time: {render_times[-1] if render_times else 0:.1f}s" | |
| progress_bar_html = ProgressBar().make_progress_bar_html(int(render_progress), f"{int(render_progress)}%") | |
| return markdown_text, progress_bar_html | |
| class ProgressBar: | |
| def make_progress_bar_css(self): | |
| return """ | |
| .progress-bar { | |
| width: 100%; | |
| height: 20px; | |
| background-color: #444; | |
| border-radius: 10px; | |
| overflow: hidden; | |
| } | |
| .progress-bar-fill { | |
| height: 100%; | |
| background-color: #ff6200; | |
| border-radius: 10px; | |
| transition: width 0.3s ease-in-out; | |
| } | |
| """ | |
| def make_progress_bar_html(self, percentage, label): | |
| css = self.make_progress_bar_css() | |
| fill_width = f"{percentage}%" | |
| html = f""" | |
| <style>{css}</style> | |
| <div class="progress-bar"> | |
| <div class="progress-bar-fill" style="width: {fill_width};"> | |
| <span style="color: white; position: absolute; margin-left: 10px;">{label}</span> | |
| </div> | |
| </div> | |
| """ | |
| return html | |
| blk.launch( | |
| server_name=args.server, | |
| server_port=args.port, | |
| share=args.share, | |
| inbrowser=args.inbrowser | |
| ) |