initial commit
Browse files- app.py +72 -0
- packages.txt +1 -0
- requirements.txt +8 -0
app.py
ADDED
|
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import numpy as np
|
| 4 |
+
from paddleocr import PaddleOCR
|
| 5 |
+
from PIL import Image
|
| 6 |
+
from transformers import pipeline
|
| 7 |
+
from transformers.pipelines.document_question_answering import apply_tesseract
|
| 8 |
+
|
| 9 |
+
PIPE = pipeline("document-question-answering", "impira/layoutlm-document-qa")
|
| 10 |
+
OCR = PaddleOCR(
|
| 11 |
+
use_angle_cls=True,
|
| 12 |
+
lang="en",
|
| 13 |
+
det_limit_side_len=10_000,
|
| 14 |
+
det_db_score_mode="slow",
|
| 15 |
+
enable_mlkdnn=True,
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
PADDLE_OCR_LABEL = "PaddleOCR (en)"
|
| 20 |
+
TESSERACT_LABEL = "Tesseract (HF default)"
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def predict(image: Image.Image, question: str, ocr_engine: str):
|
| 24 |
+
image_np = np.asarray(image)
|
| 25 |
+
|
| 26 |
+
if ocr_engine == PADDLE_OCR_LABEL:
|
| 27 |
+
ocr_result = OCR.ocr(image_np)[0]
|
| 28 |
+
words = [x[1][0] for x in ocr_result]
|
| 29 |
+
boxes = np.asarray([x[0] for x in ocr_result]) # (n_boxes, 4, 2)
|
| 30 |
+
|
| 31 |
+
for box in boxes:
|
| 32 |
+
cv2.polylines(image_np, [box.reshape(-1, 1, 2).astype(int)], True, (0, 255, 255), 3)
|
| 33 |
+
|
| 34 |
+
x1 = boxes[:, :, 0].min(1) * 1000 / image.width
|
| 35 |
+
y1 = boxes[:, :, 1].min(1) * 1000 / image.height
|
| 36 |
+
x2 = boxes[:, :, 0].max(1) * 1000 / image.width
|
| 37 |
+
y2 = boxes[:, :, 1].max(1) * 1000 / image.height
|
| 38 |
+
|
| 39 |
+
# (n_boxes, 4) in xyxy format
|
| 40 |
+
boxes = np.stack([x1, y1, x2, y2], axis=1).astype(int)
|
| 41 |
+
|
| 42 |
+
elif ocr_engine == TESSERACT_LABEL:
|
| 43 |
+
words, boxes = apply_tesseract(image, None, "")
|
| 44 |
+
|
| 45 |
+
for x1, y1, x2, y2 in boxes:
|
| 46 |
+
x1 = int(x1 * image.width / 1000)
|
| 47 |
+
y1 = int(y1 * image.height / 1000)
|
| 48 |
+
x2 = int(x2 * image.width / 1000)
|
| 49 |
+
y2 = int(y2 * image.height / 1000)
|
| 50 |
+
cv2.rectangle(image_np, (x1, y1), (x2, y2), (0, 255, 255), 3)
|
| 51 |
+
|
| 52 |
+
else:
|
| 53 |
+
raise ValueError(f"Unsupported ocr_engine={ocr_engine}")
|
| 54 |
+
|
| 55 |
+
word_boxes = list(zip(words, boxes))
|
| 56 |
+
result = PIPE(image, question, word_boxes)[0]
|
| 57 |
+
return result["answer"], result["score"], image_np
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
gr.Interface(
|
| 61 |
+
fn=predict,
|
| 62 |
+
inputs=[
|
| 63 |
+
gr.Image(type="pil"),
|
| 64 |
+
"text",
|
| 65 |
+
gr.Radio([PADDLE_OCR_LABEL, TESSERACT_LABEL]),
|
| 66 |
+
],
|
| 67 |
+
outputs=[
|
| 68 |
+
gr.Textbox(label="Answer"),
|
| 69 |
+
gr.Number(label="Score"),
|
| 70 |
+
gr.Image(label="OCR results"),
|
| 71 |
+
],
|
| 72 |
+
).launch()
|
packages.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
tesseract-ocr5
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
--extra-index-url https://mirror.baidu.com/pypi/simple
|
| 2 |
+
numpy
|
| 3 |
+
torch
|
| 4 |
+
transformers
|
| 5 |
+
paddlepaddle==2.5.1
|
| 6 |
+
paddleocr
|
| 7 |
+
opencv-python-headless
|
| 8 |
+
pytesseract
|