|
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
from peft import PeftModel |
|
|
|
|
|
|
|
|
base_model_name = "Qwen/Qwen2.5-7B-Instruct" |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(base_model_name) |
|
|
|
|
|
|
|
|
base_model = AutoModelForCausalLM.from_pretrained( |
|
|
base_model_name, |
|
|
device_map="auto", |
|
|
trust_remote_code=True |
|
|
) |
|
|
|
|
|
|
|
|
adapter_path = "gmacharla-team/qwen2.5b-finetuned" |
|
|
model = PeftModel.from_pretrained(base_model, adapter_path) |
|
|
|
|
|
|
|
|
prompt = "Hello!" |
|
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
|
outputs = model.generate(**inputs, max_new_tokens=100) |
|
|
print(tokenizer.decode(outputs[0], skip_special_tokens=True)) |
|
|
|