Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,62 +1,140 @@
|
|
| 1 |
-
# app.py (
|
| 2 |
import gradio as gr
|
| 3 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 4 |
import torch
|
|
|
|
|
|
|
| 5 |
|
| 6 |
# --- Configuration ---
|
| 7 |
-
|
|
|
|
| 8 |
|
| 9 |
# --- Model Loading ---
|
|
|
|
| 10 |
try:
|
| 11 |
-
tokenizer
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
model.eval()
|
| 14 |
-
|
| 15 |
-
model
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
except Exception as e:
|
| 19 |
-
print(f"Error loading model '{
|
| 20 |
print("Using a dummy function for demonstration purposes.")
|
| 21 |
-
tokenizer, model
|
| 22 |
|
| 23 |
# --- Inference Function ---
|
| 24 |
def generate_editorial(problem_statement: str, max_new_tokens: int, temperature: float, top_p: float) -> str:
|
| 25 |
-
if model is None:
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
try:
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
inputs = tokenizer(
|
| 32 |
input_text,
|
| 33 |
return_tensors="pt",
|
| 34 |
padding=True,
|
| 35 |
truncation=True,
|
| 36 |
-
max_length=
|
| 37 |
-
).to(device)
|
| 38 |
|
|
|
|
| 39 |
outputs = model.generate(
|
| 40 |
**inputs,
|
| 41 |
max_new_tokens=max_new_tokens,
|
| 42 |
num_return_sequences=1,
|
| 43 |
-
pad_token_id=tokenizer.eos_token_id,
|
| 44 |
do_sample=True,
|
| 45 |
top_k=50,
|
| 46 |
top_p=top_p,
|
| 47 |
temperature=temperature,
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
)
|
| 50 |
|
|
|
|
|
|
|
|
|
|
| 51 |
generated_sequence = tokenizer.decode(outputs[0], skip_special_tokens=False)
|
| 52 |
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
else:
|
|
|
|
| 57 |
editorial_content = generated_sequence.strip()
|
| 58 |
-
|
|
|
|
| 59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
return editorial_content
|
| 61 |
|
| 62 |
except Exception as e:
|
|
@@ -64,7 +142,7 @@ def generate_editorial(problem_statement: str, max_new_tokens: int, temperature:
|
|
| 64 |
return f"An error occurred during editorial generation: {e}"
|
| 65 |
|
| 66 |
# --- Gradio Interface Setup ---
|
| 67 |
-
|
| 68 |
fn=generate_editorial,
|
| 69 |
inputs=[
|
| 70 |
gr.Textbox(lines=10, label="Problem Statement", placeholder="Paste your problem statement here...", autofocus=True),
|
|
@@ -73,8 +151,8 @@ demo = gr.Interface(
|
|
| 73 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
| 74 |
],
|
| 75 |
outputs=gr.Textbox(label="Generated Editorial"),
|
| 76 |
-
title="Codeforces Editorial Assistant (
|
| 77 |
-
description="Paste a Codeforces problem statement and get a generated editorial from neuralnets/cf_codebot.",
|
| 78 |
flagging_mode="auto", # Updated from allow_flagging
|
| 79 |
examples=[
|
| 80 |
[
|
|
@@ -87,4 +165,4 @@ demo = gr.Interface(
|
|
| 87 |
)
|
| 88 |
|
| 89 |
if __name__ == "__main__":
|
| 90 |
-
|
|
|
|
| 1 |
+
# app.py (Revised for Unsloth LoRA Gemma Model)
|
| 2 |
import gradio as gr
|
| 3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM # We still use AutoModelForCausalLM for the base model
|
| 4 |
import torch
|
| 5 |
+
# Import unsloth for loading the adapters
|
| 6 |
+
from unsloth import FastLanguageModel
|
| 7 |
|
| 8 |
# --- Configuration ---
|
| 9 |
+
BASE_MODEL_NAME = "unsloth/gemma-3-4b-it"
|
| 10 |
+
ADAPTER_MODEL_NAME = "neuralnets/cf_codebot" # Your friend's fine-tuned adapters
|
| 11 |
|
| 12 |
# --- Model Loading ---
|
| 13 |
+
# This block will run once when the Space starts up.
|
| 14 |
try:
|
| 15 |
+
# Load the base model and tokenizer using unsloth's optimized method
|
| 16 |
+
# This automatically handles loading the tokenizer too.
|
| 17 |
+
# We specify "bf16" for faster inference if GPU is available, else it will default.
|
| 18 |
+
# max_seq_length is important for context window. 2048 is a common default for Gemma.
|
| 19 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
| 20 |
+
model_name = BASE_MODEL_NAME,
|
| 21 |
+
max_seq_length = 2048, # Max context length the model can handle
|
| 22 |
+
dtype = torch.bfloat16, # Optimized dtype for performance
|
| 23 |
+
load_in_4bit = True, # Load in 4-bit to save memory (even on CPU, though less impact than GPU)
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
# Load the LoRA adapters from your friend's model onto the base model
|
| 27 |
+
model = FastLanguageModel.get_peft_model(
|
| 28 |
+
model,
|
| 29 |
+
# Default LoRA configuration for inference (should match training if possible)
|
| 30 |
+
# If your friend shared their training config, use those ranks.
|
| 31 |
+
r = 16, # Rank of the LoRA adapters
|
| 32 |
+
target_modules = FastLanguageModel.get_model_peft_target_modules(model),
|
| 33 |
+
lora_alpha = 16, # Alpha value for LoRA
|
| 34 |
+
lora_dropout = 0, # Dropout for inference is usually 0
|
| 35 |
+
bias = "none",
|
| 36 |
+
use_gradient_checkpointing = False,
|
| 37 |
+
random_state = 3407,
|
| 38 |
+
max_seq_length = 2048,
|
| 39 |
+
# `use_te_vllm` for inference if you have specific hardware, but usually not needed for basic deployment
|
| 40 |
+
)
|
| 41 |
+
|
| 42 |
+
# Load the trained adapters
|
| 43 |
+
model.load_lora_weights(ADAPTER_MODEL_NAME)
|
| 44 |
+
|
| 45 |
+
# Set model to evaluation mode
|
| 46 |
model.eval()
|
| 47 |
+
|
| 48 |
+
# Move model to device (unsloth often handles this, but explicit is good)
|
| 49 |
+
# Note: Unsloth's 4-bit loading often uses `accelerate` which handles device placement.
|
| 50 |
+
# Keeping `device` print for debugging.
|
| 51 |
+
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 52 |
+
# model.to(device) # No need to explicitly move model if load_in_4bit is True, handled by bitsandbytes/accelerate
|
| 53 |
+
|
| 54 |
+
print(f"Base model '{BASE_MODEL_NAME}' and adapters '{ADAPTER_MODEL_NAME}' loaded successfully.")
|
| 55 |
+
# You can infer the actual device from the model object's parameters later if needed.
|
| 56 |
|
| 57 |
except Exception as e:
|
| 58 |
+
print(f"Error loading model '{BASE_MODEL_NAME}' or adapters '{ADAPTER_MODEL_NAME}': {e}")
|
| 59 |
print("Using a dummy function for demonstration purposes.")
|
| 60 |
+
tokenizer, model = None, None # Indicate model not loaded
|
| 61 |
|
| 62 |
# --- Inference Function ---
|
| 63 |
def generate_editorial(problem_statement: str, max_new_tokens: int, temperature: float, top_p: float) -> str:
|
| 64 |
+
if model is None or tokenizer is None: # If model failed to load, use dummy
|
| 65 |
+
print("Model not loaded, using dummy generation.")
|
| 66 |
+
if "watermelon" in problem_statement.lower():
|
| 67 |
+
return "To be able to split the watermelon such that each part is even..."
|
| 68 |
+
return "This is a placeholder editorial based on your problem statement.\n(Model failed to load, check logs)"
|
| 69 |
|
| 70 |
try:
|
| 71 |
+
# Construct the prompt in an instruction-tuned format
|
| 72 |
+
# This is CRUCIAL for instruction-tuned models like Gemma-IT
|
| 73 |
+
# You need to ensure the format matches what the model was trained on.
|
| 74 |
+
# Common format for instruction models:
|
| 75 |
+
# prompt = f"### Instruction:\n{problem_statement}\n\n### Response:\n"
|
| 76 |
+
|
| 77 |
+
# Unsloth's `FastLanguageModel.chat_template` or `apply_chat_template` is ideal here.
|
| 78 |
+
# This function generates the correct chat format for the model.
|
| 79 |
+
messages = [
|
| 80 |
+
{"role": "user", "content": problem_statement}
|
| 81 |
+
]
|
| 82 |
|
| 83 |
+
# Apply the chat template. add_generation_prompt=True ensures it's ready for generation.
|
| 84 |
+
# This adds special tokens like <bos><start_of_turn>user ... <end_of_turn><start_of_turn>model
|
| 85 |
+
input_text = tokenizer.apply_chat_template(
|
| 86 |
+
messages,
|
| 87 |
+
tokenize=False, # We want the string, not token IDs
|
| 88 |
+
add_generation_prompt=True
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
# Tokenize the input string
|
| 92 |
inputs = tokenizer(
|
| 93 |
input_text,
|
| 94 |
return_tensors="pt",
|
| 95 |
padding=True,
|
| 96 |
truncation=True,
|
| 97 |
+
max_length=tokenizer.model_max_length # Use model's max_length
|
| 98 |
+
).to(model.device) # Ensure inputs are on the same device as the model
|
| 99 |
|
| 100 |
+
# Generate text
|
| 101 |
outputs = model.generate(
|
| 102 |
**inputs,
|
| 103 |
max_new_tokens=max_new_tokens,
|
| 104 |
num_return_sequences=1,
|
|
|
|
| 105 |
do_sample=True,
|
| 106 |
top_k=50,
|
| 107 |
top_p=top_p,
|
| 108 |
temperature=temperature,
|
| 109 |
+
pad_token_id=tokenizer.eos_token_id, # Ensure pad_token_id is set
|
| 110 |
+
# Stopping criteria: for instruction-tuned models, often <eos_token> or specific strings.
|
| 111 |
+
# If your friend's model generates "<end_of_turn>" specifically, keep that.
|
| 112 |
+
# Otherwise, the default generation stopping (tokenizer.eos_token_id) usually suffices.
|
| 113 |
+
# `stop_sequences=["<end_of_turn>"]`
|
| 114 |
)
|
| 115 |
|
| 116 |
+
# Decode the generated text
|
| 117 |
+
# We need to skip the input prompt from the generated text
|
| 118 |
+
# `skip_special_tokens=True` for clean text, but check if it affects your specific `<end_of_turn>`
|
| 119 |
generated_sequence = tokenizer.decode(outputs[0], skip_special_tokens=False)
|
| 120 |
|
| 121 |
+
# Extract only the model's response.
|
| 122 |
+
# The `apply_chat_template` typically produces something like:
|
| 123 |
+
# "<bos><start_of_turn>user\n{problem_statement}<end_of_turn>\n<start_of_turn>model\n"
|
| 124 |
+
# We want to find the start of the model's response and take everything after it.
|
| 125 |
+
response_start_marker = "<start_of_turn>model\n" # or similar based on template
|
| 126 |
+
if response_start_marker in generated_sequence:
|
| 127 |
+
editorial_content = generated_sequence.split(response_start_marker)[-1].strip()
|
| 128 |
else:
|
| 129 |
+
# Fallback if marker not found, or if generated_sequence starts with input
|
| 130 |
editorial_content = generated_sequence.strip()
|
| 131 |
+
if editorial_content.startswith(input_text):
|
| 132 |
+
editorial_content = editorial_content[len(input_text):].strip()
|
| 133 |
|
| 134 |
+
# Remove any lingering special tokens like <end_of_turn> or <eos_token>
|
| 135 |
+
# (tokenizer.decode with skip_special_tokens=True might handle this, but manual clean is safer)
|
| 136 |
+
editorial_content = editorial_content.replace("<end_of_turn>", "").replace(tokenizer.eos_token, "").strip()
|
| 137 |
+
|
| 138 |
return editorial_content
|
| 139 |
|
| 140 |
except Exception as e:
|
|
|
|
| 142 |
return f"An error occurred during editorial generation: {e}"
|
| 143 |
|
| 144 |
# --- Gradio Interface Setup ---
|
| 145 |
+
iface = gr.Interface(
|
| 146 |
fn=generate_editorial,
|
| 147 |
inputs=[
|
| 148 |
gr.Textbox(lines=10, label="Problem Statement", placeholder="Paste your problem statement here...", autofocus=True),
|
|
|
|
| 151 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
| 152 |
],
|
| 153 |
outputs=gr.Textbox(label="Generated Editorial"),
|
| 154 |
+
title="Codeforces Editorial Assistant (Gemma LoRA)",
|
| 155 |
+
description="Paste a Codeforces problem statement and get a generated editorial from neuralnets/cf_codebot (Gemma-3-4b-it LoRA).",
|
| 156 |
flagging_mode="auto", # Updated from allow_flagging
|
| 157 |
examples=[
|
| 158 |
[
|
|
|
|
| 165 |
)
|
| 166 |
|
| 167 |
if __name__ == "__main__":
|
| 168 |
+
iface.launch()
|