Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import json
|
| 3 |
+
import gradio as gr
|
| 4 |
+
|
| 5 |
+
with open("num_to_token.json", "r") as f:
|
| 6 |
+
num_to_token = json.load(f)
|
| 7 |
+
token_to_num = {v:k for k,v in num_to_token.items()}
|
| 8 |
+
token_embeddings = torch.load("token_embeddings.pt")
|
| 9 |
+
|
| 10 |
+
tags = sorted(list(num_to_token.values()))
|
| 11 |
+
|
| 12 |
+
def predict(target_tag, sort_by="descend"):
|
| 13 |
+
if sort_by == "descending":
|
| 14 |
+
multiplier = 1
|
| 15 |
+
else:
|
| 16 |
+
multiplier = -1
|
| 17 |
+
target_embedding = token_embeddings[int(token_to_num[target_tag])].unsqueeze(0)
|
| 18 |
+
sims = torch.cosine_similarity(target_embedding, token_embeddings, dim=1)
|
| 19 |
+
results = {num_to_token[str(i)]:sims[i].item() * multiplier for i in range(len(num_to_token))}
|
| 20 |
+
|
| 21 |
+
return results
|
| 22 |
+
|
| 23 |
+
demo = gr.Interface(
|
| 24 |
+
fn=predict,
|
| 25 |
+
inputs=[
|
| 26 |
+
gr.Dropdown(choices=tags, label="Target tag", value="otoko no ko"),
|
| 27 |
+
gr.Dropdown(choices=["ascending", "descending"], label="Sort by", value="descending")
|
| 28 |
+
],
|
| 29 |
+
outputs=gr.Label(num_top_classes=50),
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
demo.launch()
|