Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -14,31 +14,33 @@ df['real'] = df['real'].apply(lambda x: f"{x:.2f}")
|
|
| 14 |
# Fill NaN values and convert all columns to strings
|
| 15 |
df = df.fillna('').astype(str)
|
| 16 |
|
| 17 |
-
# Function to filter the DataFrame using RapidFuzz
|
| 18 |
-
def
|
| 19 |
-
# Apply fuzzy matching on the 'ds' (date)
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
return df.iloc[filtered_rows]
|
| 30 |
|
| 31 |
# Function to generate a response using the TAPAS model
|
| 32 |
def response(user_question, df):
|
| 33 |
a = datetime.datetime.now()
|
| 34 |
|
| 35 |
# Extract date and group keywords from the user question
|
| 36 |
-
date_str = "December 2022" # Example; you'd extract this from the user question
|
| 37 |
group_keyword = "IPVA"
|
| 38 |
|
| 39 |
# Filter the DataFrame by date and group
|
| 40 |
-
subset_df =
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
# Initialize the TAPAS model
|
| 44 |
tqa = pipeline(task="table-question-answering", model="google/tapas-large-finetuned-wtq",
|
|
@@ -52,10 +54,10 @@ def response(user_question, df):
|
|
| 52 |
# Query the TAPAS model
|
| 53 |
try:
|
| 54 |
answer = tqa(table=subset_df, query=user_question)['answer']
|
| 55 |
-
except
|
| 56 |
print(f"Error: {e}")
|
| 57 |
-
answer = "
|
| 58 |
-
|
| 59 |
query_result = {
|
| 60 |
"Resposta": answer
|
| 61 |
}
|
|
|
|
| 14 |
# Fill NaN values and convert all columns to strings
|
| 15 |
df = df.fillna('').astype(str)
|
| 16 |
|
| 17 |
+
# Function to filter the DataFrame using RapidFuzz
|
| 18 |
+
def filter_dataframe(df, date_str, group_keyword, threshold=80):
|
| 19 |
+
# Apply fuzzy matching on the 'ds' (date) and 'Group' columns
|
| 20 |
+
date_matches = process.extract(date_str, df['ds'], scorer=fuzz.token_sort_ratio, limit=None)
|
| 21 |
+
group_matches = process.extract(group_keyword, df['Group'], scorer=fuzz.token_sort_ratio, limit=None)
|
| 22 |
+
|
| 23 |
+
# Get the indices that match both criteria
|
| 24 |
+
date_indices = {match[2] for match in date_matches if match[1] >= threshold}
|
| 25 |
+
group_indices = {match[2] for match in group_matches if match[1] >= threshold}
|
| 26 |
+
common_indices = list(date_indices & group_indices)
|
| 27 |
+
|
| 28 |
+
return df.iloc[common_indices]
|
|
|
|
| 29 |
|
| 30 |
# Function to generate a response using the TAPAS model
|
| 31 |
def response(user_question, df):
|
| 32 |
a = datetime.datetime.now()
|
| 33 |
|
| 34 |
# Extract date and group keywords from the user question
|
| 35 |
+
date_str = "December 2022" # Example; you'd extract this from the user question dynamically
|
| 36 |
group_keyword = "IPVA"
|
| 37 |
|
| 38 |
# Filter the DataFrame by date and group
|
| 39 |
+
subset_df = filter_dataframe(df, date_str, group_keyword)
|
| 40 |
+
|
| 41 |
+
# Check if the DataFrame is empty
|
| 42 |
+
if subset_df.empty:
|
| 43 |
+
return {"Resposta": "Desculpe, não há dados disponíveis para responder à sua pergunta."}
|
| 44 |
|
| 45 |
# Initialize the TAPAS model
|
| 46 |
tqa = pipeline(task="table-question-answering", model="google/tapas-large-finetuned-wtq",
|
|
|
|
| 54 |
# Query the TAPAS model
|
| 55 |
try:
|
| 56 |
answer = tqa(table=subset_df, query=user_question)['answer']
|
| 57 |
+
except ValueError as e:
|
| 58 |
print(f"Error: {e}")
|
| 59 |
+
answer = "Desculpe, ocorreu um erro ao processar sua pergunta."
|
| 60 |
+
|
| 61 |
query_result = {
|
| 62 |
"Resposta": answer
|
| 63 |
}
|