Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| import pandas as pd | |
| from transformers import BartForConditionalGeneration, TapexTokenizer, T5ForConditionalGeneration, T5Tokenizer | |
| from prophet import Prophet | |
| import datetime | |
| import sentencepiece as spm | |
| st.markdown(""" | |
| <div style='display: flex; flex-direction: column; align-items: center;'> | |
| <div style='display: flex; align-items: center;'> | |
| <div style='width: 20px; height: 20px; background-color: green; border-radius: 50%; margin-right: 2px;'></div> | |
| <div style='width: 20px; height: 20px; background-color: red; border-radius: 50%; margin-right: 2px;'></div> | |
| <div style='width: 20px; height: 20px; background-color: yellow; border-radius: 50%; margin-right: 10px;'></div> | |
| <span style='font-size: 40px; font-weight: bold;'>PROTAX</span> | |
| </div> | |
| <div style='text-align: center; width: 100%;'> | |
| <span style='font-size: 20px; font-weight: bold; color: #333;'> | |
| <strong>PRO</strong>phet & <strong>TA</strong>pex E<strong>X</strong>plorer</span> | |
| </div> | |
| </div> | |
| """, unsafe_allow_html=True) | |
| # File upload interface | |
| uploaded_file = st.file_uploader("Carregue um arquivo CSV ou XLSX", type=['csv', 'xlsx']) | |
| if uploaded_file: | |
| if 'all_anomalies' not in st.session_state: | |
| with st.spinner('Aplicando modelo de série temporal...'): | |
| # Load the file into a DataFrame | |
| if uploaded_file.name.endswith('.csv'): | |
| df = pd.read_csv(uploaded_file, quotechar='"', encoding='utf-8') | |
| elif uploaded_file.name.endswith('.xlsx'): | |
| df = pd.read_excel(uploaded_file) | |
| # Data preprocessing for Prophet | |
| new_df = df.iloc[2:, 9:-1].fillna(0) | |
| new_df.columns = df.iloc[1, 9:-1] | |
| new_df.columns = new_df.columns.str.replace(r" \(\d+\)", "", regex=True) | |
| month_dict = { | |
| 'Jan': '01', 'Fev': '02', 'Mar': '03', 'Abr': '04', | |
| 'Mai': '05', 'Jun': '06', 'Jul': '07', 'Ago': '08', | |
| 'Set': '09', 'Out': '10', 'Nov': '11', 'Dez': '12' | |
| } | |
| def convert_column_name(column_name): | |
| if column_name == 'Rótulos de Linha': | |
| return column_name | |
| parts = column_name.split('/') | |
| month = parts[0].strip() | |
| year = parts[1].strip() | |
| year = ''.join(filter(str.isdigit, year)) | |
| month_number = month_dict.get(month, '00') | |
| return f"{month_number}/{year}" | |
| new_df.columns = [convert_column_name(col) for col in new_df.columns] | |
| new_df.columns = pd.to_datetime(new_df.columns, errors='coerce') | |
| new_df.rename(columns={new_df.columns[0]: 'Rotulo'}, inplace=True) | |
| df_clean = new_df.copy() | |
| # Create an empty DataFrame to store all anomalies | |
| all_anomalies = pd.DataFrame() | |
| # Process each row in the DataFrame | |
| for index, row in df_clean.iterrows(): | |
| data = pd.DataFrame({ | |
| 'ds': [col for col in df_clean.columns if isinstance(col, pd.Timestamp)], | |
| 'y': row[[isinstance(col, pd.Timestamp) for col in df_clean.columns]].values | |
| }) | |
| data = data[data['y'] > 0].reset_index(drop=True) | |
| if data.empty or len(data) < 2: | |
| print(f"Skipping group {row['Rotulo']} because there are less than 2 non-zero observations.") | |
| continue | |
| try: | |
| model = Prophet(interval_width=0.95) | |
| model.fit(data) | |
| except ValueError as e: | |
| print(f"Skipping group {row['Rotulo']} due to error: {e}") | |
| continue | |
| future = model.make_future_dataframe(periods=12, freq='M') | |
| forecast = model.predict(future) | |
| num_real = len(data) | |
| num_forecast = len(forecast) | |
| real_values = list(data['y']) + [None] * (num_forecast - num_real) | |
| forecast['real'] = real_values | |
| anomalies = forecast[(forecast['real'] < forecast['yhat_lower']) | (forecast['real'] > forecast['yhat_upper'])] | |
| anomalies['Group'] = row['Rotulo'] | |
| all_anomalies = pd.concat([all_anomalies, anomalies[['ds', 'real', 'Group']]], ignore_index=True) | |
| # Store the result in session state | |
| all_anomalies.rename(columns={"ds": "datetime", "real": "monetary value", "Group": "group"}, inplace=True) | |
| all_anomalies = all_anomalies[all_anomalies['monetary value'].astype('float') >= 10,000,000.00] | |
| all_anomalies['monetary value'] = all_anomalies['monetary value'].apply(lambda x: f"{x:.2f}") | |
| all_anomalies.sort_values(by=['monetary value'], ascending=False, inplace=True) | |
| all_anomalies = all_anomalies.fillna('').astype(str) | |
| st.session_state['all_anomalies'] = all_anomalies | |
| # Load translation models | |
| pt_en_translator = T5ForConditionalGeneration.from_pretrained("unicamp-dl/translation-pt-en-t5") | |
| en_pt_translator = T5ForConditionalGeneration.from_pretrained("unicamp-dl/translation-en-pt-t5") | |
| tokenizer = T5Tokenizer.from_pretrained("unicamp-dl/translation-pt-en-t5") | |
| # Load TAPEX model | |
| tapex_model = BartForConditionalGeneration.from_pretrained("microsoft/tapex-large-finetuned-wtq") | |
| tapex_tokenizer = TapexTokenizer.from_pretrained("microsoft/tapex-large-finetuned-wtq") | |
| def translate(text, model, tokenizer, source_lang="pt", target_lang="en"): | |
| input_ids = tokenizer.encode(text, return_tensors="pt", add_special_tokens=True) | |
| outputs = model.generate(input_ids) | |
| translated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| return translated_text | |
| def response(user_question, table_data): | |
| question_en = translate(user_question, pt_en_translator, tokenizer, source_lang="pt", target_lang="en") | |
| encoding = tapex_tokenizer(table=table_data, query=[question_en], padding=True, return_tensors="pt", truncation=True) | |
| outputs = tapex_model.generate(**encoding) | |
| response_en = tapex_tokenizer.batch_decode(outputs, skip_special_tokens=True)[0] | |
| response_pt = translate(response_en, en_pt_translator, tokenizer, source_lang="en", target_lang="pt") | |
| return response_pt | |
| # Streamlit interface | |
| st.dataframe(st.session_state['all_anomalies'].head()) | |
| # Chat history | |
| if 'history' not in st.session_state: | |
| st.session_state['history'] = [] | |
| user_question = st.text_input("Escreva sua questão aqui:", "") | |
| if user_question: | |
| st.session_state['history'].append(('👤', user_question)) | |
| st.markdown(f"**👤 {user_question}**") | |
| bot_response = response(user_question, st.session_state['all_anomalies']) | |
| st.session_state['history'].append(('🤖', bot_response)) | |
| st.markdown(f"<div style='text-align: right'>**🤖 {bot_response}**</div>", unsafe_allow_html=True) | |
| if st.button("Limpar"): | |
| st.session_state['history'] = [] | |
| for sender, message in st.session_state['history']: | |
| if sender == '👤': | |
| st.markdown(f"**👤 {message}**") | |
| elif sender == '🤖': | |
| st.markdown(f"<div style='text-align: right'>**🤖 {message}**</div>", unsafe_allow_html=True) | |
| else: | |
| st.warning("Por favor, carregue um arquivo CSV ou XLSX para começar.") | |