Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| import pandas as pd | |
| from transformers import BartForConditionalGeneration, TapexTokenizer, T5ForConditionalGeneration, T5Tokenizer | |
| from prophet import Prophet | |
| # Abrindo e lendo o arquivo CSS | |
| with open("style.css", "r") as css: | |
| css_style = css.read() | |
| # Markdown combinado com a importação da fonte e o HTML | |
| html_content = f""" | |
| <style> | |
| {css_style} | |
| @import url('https://fonts.googleapis.com/css2?family=Kanit:wght@700&display=swap'); | |
| </style> | |
| <div style='display: flex; flex-direction: column; align-items: flex-start;'> | |
| <div style='display: flex; align-items: center;'> | |
| <div style='width: 20px; height: 5px; background-color: green; margin-right: 0px;'></div> | |
| <div style='width: 20px; height: 5px; background-color: red; margin-right: 0px;'></div> | |
| <div style='width: 20px; height: 5px; background-color: yellow; margin-right: 18px;'></div> | |
| <span style='font-size: 38px; font-weight: normal; font-family: "Kanit", sans-serif;'>NOSTRADAMUS</span> | |
| </div> | |
| </div> | |
| """ | |
| # Aplicar o markdown combinado no Streamlit | |
| st.markdown(html_content, unsafe_allow_html=True) | |
| # Inicialização de variáveis de estado | |
| if 'all_anomalies' not in st.session_state: | |
| st.session_state['all_anomalies'] = pd.DataFrame() | |
| if 'history' not in st.session_state: | |
| st.session_state['history'] = [] | |
| # Carregar os modelos de tradução e TAPEX | |
| pt_en_translator = T5ForConditionalGeneration.from_pretrained("unicamp-dl/translation-pt-en-t5") | |
| en_pt_translator = T5ForConditionalGeneration.from_pretrained("unicamp-dl/translation-en-pt-t5") | |
| tapex_model = BartForConditionalGeneration.from_pretrained("microsoft/tapex-large-finetuned-wtq") | |
| tapex_tokenizer = TapexTokenizer.from_pretrained("microsoft/tapex-large-finetuned-wtq") | |
| tokenizer = T5Tokenizer.from_pretrained("unicamp-dl/translation-pt-en-t5") | |
| def translate(text, model, tokenizer, source_lang="pt", target_lang="en"): | |
| input_ids = tokenizer.encode(text, return_tensors="pt", add_special_tokens=True) | |
| outputs = model.generate(input_ids) | |
| translated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| return translated_text | |
| def response(user_question, table_data): | |
| question_en = translate(user_question, pt_en_translator, tokenizer, source_lang="pt", target_lang="en") | |
| encoding = tapex_tokenizer(table=table_data, query=[question_en], padding=True, return_tensors="pt", truncation=True) | |
| outputs = tapex_model.generate(**encoding) | |
| response_en = tapex_tokenizer.batch_decode(outputs, skip_special_tokens=True)[0] | |
| response_pt = translate(response_en, en_pt_translator, tokenizer, source_lang="en", target_lang="pt") | |
| return response_pt | |
| def load_data(uploaded_file): | |
| if uploaded_file.name.endswith('.csv'): | |
| df = pd.read_csv(uploaded_file, quotechar='"', encoding='utf-8') | |
| elif uploaded_file.name.endswith('.xlsx'): | |
| df = pd.read_excel(uploaded_file) | |
| return df | |
| def preprocess_data(df): | |
| new_df = df.iloc[2:,9:-1].fillna(0) | |
| new_df.columns = df.iloc[1,9:-1] | |
| new_df.columns = new_df.columns.str.replace(r" \(\d+\)", "", regex=True) | |
| month_dict = { | |
| 'Jan': '01', 'Fev': '02', 'Mar': '03', 'Abr': '04', | |
| 'Mai': '05', 'Jun': '06', 'Jul': '07', 'Ago': '08', | |
| 'Set': '09', 'Out': '10', 'Nov': '11', 'Dez': '12' | |
| } | |
| def convert_column_name(column_name): | |
| # Check if the column name is 'Rótulos de Linha' | |
| if column_name == 'Rótulos de Linha': | |
| return column_name | |
| # Otherwise, proceed to convert | |
| parts = column_name.split('/') | |
| month = parts[0].strip() | |
| year = parts[1].strip() | |
| # Clean year in case there are extra characters | |
| year = ''.join(filter(str.isdigit, year)) | |
| # Get month number from the dictionary | |
| month_number = month_dict.get(month, '00') # Default '00' if month is not found | |
| # Return formatted date string | |
| return f"{month_number}/{year}" | |
| new_df.columns = [convert_column_name(col) for col in new_df.columns] | |
| new_df.columns = pd.to_datetime(new_df.columns, errors='coerce') | |
| new_df.rename(columns={new_df.columns[0]: 'Rotulo'}, inplace=True) | |
| df_clean = new_df.copy() | |
| return df_clean | |
| def apply_prophet(df_clean): | |
| if df_clean.empty: | |
| st.error("DataFrame está vazio após o pré-processamento.") | |
| return pd.DataFrame() | |
| # Debugging: Check structure of df_clean | |
| st.write("Estrutura do DataFrame df_clean:") | |
| st.write(df_clean) | |
| # Criar um DataFrame vazio para armazenar todas as anomalias | |
| all_anomalies = pd.DataFrame() | |
| # Processar cada linha no DataFrame | |
| for index, row in df_clean.iterrows(): | |
| # Extract timestamp and value columns | |
| date_columns = [col for col in df_clean.columns if isinstance(col, pd.Timestamp)] | |
| data = pd.DataFrame({ | |
| 'ds': date_columns, | |
| 'y': row[date_columns].values | |
| }) | |
| # Debugging: Check the data passed into Prophet | |
| st.write(f"Dados para Prophet - Grupo {row['Rotulo']}:") | |
| st.write(data) | |
| # Remove rows where 'y' is zero or missing | |
| data = data[data['y'] > 0].dropna().reset_index(drop=True) | |
| # Ensure there's enough data for Prophet to run | |
| if data.empty or len(data) < 2: | |
| st.write(f"Pular grupo {row['Rotulo']} por não ter observações suficientes.") | |
| continue | |
| try: | |
| # Create and fit the Prophet model | |
| model = Prophet(interval_width=0.95) | |
| model.fit(data) | |
| except ValueError as e: | |
| st.write(f"Pular grupo {row['Rotulo']} devido ao erro: {e}") | |
| continue | |
| # Make future predictions | |
| future = model.make_future_dataframe(periods=12, freq='M') | |
| forecast = model.predict(future) | |
| # Add real values and calculate anomalies | |
| real_values = list(data['y']) + [None] * (len(forecast) - len(data)) | |
| forecast['real'] = real_values | |
| anomalies = forecast[(forecast['real'] < forecast['yhat_lower']) | (forecast['real'] > forecast['yhat_upper'])] | |
| # Debugging: Check the anomalies detected | |
| st.write(f"Anomalias detectadas para o grupo {row['Rotulo']}:") | |
| st.write(anomalies) | |
| # Add group label and append anomalies to all_anomalies DataFrame | |
| anomalies['group'] = row['Rotulo'] | |
| all_anomalies = pd.concat([all_anomalies, anomalies[['ds', 'real', 'group']]], ignore_index=True) | |
| # Return the dataframe of all anomalies | |
| return all_anomalies | |
| tab1, tab2 = st.tabs(["Meta Prophet", "Microsoft TAPEX"]) | |
| # Interface para carregar arquivo | |
| uploaded_file = st.file_uploader("Carregue um arquivo CSV ou XLSX", type=['csv', 'xlsx']) | |
| with tab1: | |
| if uploaded_file: | |
| df = load_data(uploaded_file) | |
| df_clean = preprocess_data(df) | |
| if df_clean.empty: | |
| st.warning("Não há dados válidos para processar.") | |
| else: | |
| # Check if 'all_anomalies' is already in session state to avoid re-running Prophet | |
| if 'all_anomalies' not in st.session_state: | |
| with st.spinner('Aplicando modelo de série temporal...'): | |
| all_anomalies = apply_prophet(df_clean) | |
| st.session_state['all_anomalies'] = all_anomalies | |
| with tab2: | |
| # Ensure 'all_anomalies' exists in session state before allowing user interaction | |
| if 'all_anomalies' in st.session_state and not st.session_state['all_anomalies'].empty: | |
| # Interface para perguntas do usuário | |
| user_question = st.text_input("Escreva sua questão aqui:", "") | |
| if user_question: | |
| bot_response = response(user_question, st.session_state['all_anomalies']) | |
| st.session_state['history'].append(('👤', user_question)) | |
| st.session_state['history'].append(('🤖', bot_response)) | |
| # Mostrar histórico de conversa | |
| for sender, message in st.session_state['history']: | |
| if sender == '👤': | |
| st.markdown(f"**👤 {message}**") | |
| elif sender == '🤖': | |
| st.markdown(f"**🤖 {message}**", unsafe_allow_html=True) | |
| # Botão para limpar histórico | |
| if st.button("Limpar histórico"): | |
| st.session_state['history'] = [] | |
| else: | |
| st.warning("Por favor, processe os dados no Meta Prophet primeiro.") | |