File size: 28,019 Bytes
557c6b6
 
 
 
63348a9
557c6b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63348a9
557c6b6
 
 
 
 
 
 
 
 
 
 
 
63348a9
557c6b6
 
63348a9
557c6b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08c68bc
63348a9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
# Import environment setup before any other imports
from env_setup import setup_environment
setup_environment()

import gradio as gr
import os
from model_utils import load_model, get_available_models
from data_processing import process_dataset, validate_dataset
from fine_tuning import start_fine_tuning, load_training_state
import tempfile

CSS = """
.feedback-div {
    padding: 10px;
    margin-bottom: 10px;
    border-radius: 5px;
}
.success {
    background-color: #d4edda;
    color: #155724;
    border: 1px solid #c3e6cb;
}
.error {
    background-color: #f8d7da;
    color: #721c24;
    border: 1px solid #f5c6cb;
}
.info {
    background-color: #d1ecf1;
    color: #0c5460;
    border: 1px solid #bee5eb;
}
"""

with gr.Blocks(css=CSS, theme=gr.themes.Soft()) as demo:
    # Store state across tabs
    state = gr.State({
        "dataset_path": None,
        "processed_dataset": None,
        "model_name": None,
        "model_instance": None,
        "training_params": None,
        "fine_tuned_model_path": None,
        "training_logs": []
    })
    
    with gr.Sidebar():
        gr.Markdown("# Gemma Fine-Tuning UI")
        gr.Markdown("Sign in with your Hugging Face account to use the Nebius API for inference and model access.")
        button = gr.LoginButton("Sign in")
        
        gr.Markdown("## Navigation")
        
    with gr.Tab("Introduction"):
        gr.Markdown("""
        # Welcome to Gemma Fine-Tuning UI
        
        This application allows you to fine-tune Google's Gemma models on your own datasets with a user-friendly interface.
        
        ## Features:
        - Upload and preprocess your datasets in various formats (CSV, JSONL, TXT)
        - Configure model hyperparameters for optimal performance
        - Visualize training progress in real-time
        - Export your fine-tuned model in different formats
        
        ## Getting Started:
        1. Navigate to the **Dataset Upload** tab to prepare your data
        2. Configure your model and hyperparameters in the **Model Configuration** tab
        3. Start and monitor training in the **Training** tab
        4. Export your fine-tuned model in the **Export Model** tab
        
        For more details, check the Documentation tab.
        """)
        
    with gr.Tab("Dataset Upload"):
        gr.Markdown("## Upload and prepare your dataset for fine-tuning")
        
        with gr.Row():
            with gr.Column():
                dataset_file = gr.File(
                    label="Upload Dataset File (CSV, JSONL, or TXT)",
                    file_types=["csv", "jsonl", "json", "txt"]
                )
                
                data_format = gr.Radio(
                    ["CSV", "JSONL", "Plain Text"],
                    label="Data Format",
                    value="CSV"
                )
                
                with gr.Accordion("CSV Options", open=False):
                    csv_prompt_col = gr.Textbox(label="Prompt Column Name", value="prompt")
                    csv_completion_col = gr.Textbox(label="Completion Column Name", value="completion")
                    csv_separator = gr.Textbox(label="Column Separator", value=",")
                
                with gr.Accordion("JSONL Options", open=False):
                    jsonl_prompt_key = gr.Textbox(label="Prompt Key", value="prompt")
                    jsonl_completion_key = gr.Textbox(label="Completion Key", value="completion")
                
                with gr.Accordion("Text Options", open=False):
                    text_separator = gr.Textbox(
                        label="Prompt/Completion Separator", 
                        value="###",
                        info="Symbol or text that separates prompts from completions"
                    )
                
                process_btn = gr.Button("Process Dataset", variant="primary")
                
            with gr.Column():
                dataset_info = gr.JSON(label="Dataset Information", visible=True)
                preview_df = gr.Dataframe(label="Data Preview", wrap=True)
                dataset_feedback = gr.Markdown(
                    "", 
                    elem_classes=["feedback-div"]
                )
        
        def process_dataset_handler(
            file, data_format, csv_prompt, csv_completion, csv_sep, 
            jsonl_prompt, jsonl_completion, text_sep, current_state
        ):
            if file is None:
                return (
                    current_state,
                    None, 
                    gr.update(value="⚠️ Please upload a file first", elem_classes=["feedback-div", "error"]),
                    None
                )
            
            try:
                # Create a temporary file to store the uploaded content
                temp_dir = tempfile.mkdtemp()
                file_path = os.path.join(temp_dir, file.name)
                
                # Save the uploaded file to the temporary location
                with open(file_path, "wb") as f:
                    f.write(file.read())
                
                # Prepare format-specific options
                options = {
                    "format": data_format.lower(),
                    "csv_prompt_col": csv_prompt,
                    "csv_completion_col": csv_completion,
                    "csv_separator": csv_sep,
                    "jsonl_prompt_key": jsonl_prompt,
                    "jsonl_completion_key": jsonl_completion,
                    "text_separator": text_sep
                }
                
                # Validate the dataset
                is_valid, message = validate_dataset(file_path, options)
                if not is_valid:
                    return (
                        current_state,
                        None, 
                        gr.update(value=f"⚠️ {message}", elem_classes=["feedback-div", "error"]),
                        None
                    )
                
                # Process the dataset
                processed_data, stats, preview = process_dataset(file_path, options)
                
                # Update state
                current_state = current_state.copy()
                current_state["dataset_path"] = file_path
                current_state["processed_dataset"] = processed_data
                
                return (
                    current_state,
                    stats, 
                    gr.update(value="✅ Dataset processed successfully", elem_classes=["feedback-div", "success"]),
                    preview
                )
                
            except Exception as e:
                return (
                    current_state,
                    None, 
                    gr.update(value=f"⚠️ Error processing dataset: {str(e)}", elem_classes=["feedback-div", "error"]),
                    None
                )
        
        process_btn.click(
            process_dataset_handler,
            inputs=[
                dataset_file, data_format, 
                csv_prompt_col, csv_completion_col, csv_separator,
                jsonl_prompt_key, jsonl_completion_key, 
                text_separator, state
            ],
            outputs=[state, dataset_info, dataset_feedback, preview_df]
        )
        
    with gr.Tab("Model Configuration"):
        gr.Markdown("## Select a model and configure hyperparameters")
        
        with gr.Row():
            with gr.Column():
                model_name = gr.Dropdown(
                    choices=get_available_models(),
                    label="Select Base Model",
                    value="google/gemma-2-2b-it"
                )
                
                with gr.Accordion("Training Parameters", open=True):
                    learning_rate = gr.Slider(
                        minimum=1e-6, maximum=1e-3, value=2e-5, step=1e-6,
                        label="Learning Rate",
                        info="Controls how quickly the model adapts to the training data"
                    )
                    batch_size = gr.Slider(
                        minimum=1, maximum=32, value=4, step=1,
                        label="Batch Size",
                        info="Number of samples processed before model weights are updated"
                    )
                    num_epochs = gr.Slider(
                        minimum=1, maximum=10, value=3, step=1,
                        label="Number of Epochs",
                        info="Number of complete passes through the training dataset"
                    )
                    max_seq_length = gr.Slider(
                        minimum=128, maximum=2048, value=512, step=64,
                        label="Max Sequence Length",
                        info="Maximum length of input sequences"
                    )
                
                with gr.Accordion("Advanced Options", open=False):
                    gradient_accumulation_steps = gr.Slider(
                        minimum=1, maximum=16, value=1, step=1,
                        label="Gradient Accumulation Steps",
                        info="Accumulate gradients over multiple batches to simulate larger batch size"
                    )
                    warmup_steps = gr.Slider(
                        minimum=0, maximum=500, value=100, step=10,
                        label="Warmup Steps",
                        info="Number of steps for learning rate warmup"
                    )
                    weight_decay = gr.Slider(
                        minimum=0, maximum=0.1, value=0.01, step=0.001,
                        label="Weight Decay",
                        info="L2 regularization factor to prevent overfitting"
                    )
                    lora_r = gr.Slider(
                        minimum=1, maximum=64, value=16, step=1,
                        label="LoRA Rank (r)",
                        info="Rank of LoRA adaptors (lower value = smaller model)"
                    )
                    lora_alpha = gr.Slider(
                        minimum=1, maximum=64, value=32, step=1,
                        label="LoRA Alpha",
                        info="LoRA scaling factor (higher = stronger adaptation)"
                    )
                    lora_dropout = gr.Slider(
                        minimum=0, maximum=0.5, value=0.05, step=0.01,
                        label="LoRA Dropout",
                        info="Dropout probability for LoRA layers"
                    )
                
                save_config_btn = gr.Button("Save Configuration", variant="primary")
            
            with gr.Column():
                config_info = gr.JSON(label="Current Configuration")
                config_feedback = gr.Markdown(
                    "", 
                    elem_classes=["feedback-div"]
                )
        
        def save_config_handler(
            model, lr, bs, epochs, seq_len, grad_accum, warmup, 
            weight_decay, lora_r, lora_alpha, lora_dropout, current_state
        ):
            # Check if dataset is processed
            if current_state["processed_dataset"] is None:
                return (
                    current_state,
                    None,
                    gr.update(value="⚠️ Please process a dataset first in the Dataset Upload tab", 
                             elem_classes=["feedback-div", "error"])
                )
            
            config = {
                "model_name": model,
                "learning_rate": lr,
                "batch_size": bs,
                "num_epochs": epochs,
                "max_seq_length": seq_len,
                "gradient_accumulation_steps": grad_accum,
                "warmup_steps": warmup,
                "weight_decay": weight_decay,
                "lora_r": lora_r,
                "lora_alpha": lora_alpha,
                "lora_dropout": lora_dropout
            }
            
            # Update state
            current_state = current_state.copy()
            current_state["model_name"] = model
            current_state["training_params"] = config
            
            return (
                current_state,
                config,
                gr.update(value="✅ Configuration saved successfully", 
                         elem_classes=["feedback-div", "success"])
            )
        
        save_config_btn.click(
            save_config_handler,
            inputs=[
                model_name, learning_rate, batch_size, num_epochs, max_seq_length,
                gradient_accumulation_steps, warmup_steps, weight_decay,
                lora_r, lora_alpha, lora_dropout, state
            ],
            outputs=[state, config_info, config_feedback]
        )
        
    with gr.Tab("Training"):
        gr.Markdown("## Train your model and monitor progress")
        
        with gr.Row():
            with gr.Column(scale=1):
                start_btn = gr.Button("Start Training", variant="primary", interactive=True)
                stop_btn = gr.Button("Stop Training", variant="stop", interactive=False)
                
                with gr.Accordion("Training Status", open=True):
                    status = gr.Markdown("Not started", elem_classes=["feedback-div", "info"])
                    progress = gr.Slider(
                        minimum=0, maximum=100, value=0, label="Training Progress", interactive=False
                    )
                    current_epoch = gr.Number(label="Current Epoch", value=0, interactive=False)
                    current_step = gr.Number(label="Current Step", value=0, interactive=False)
                    elapsed_time = gr.Textbox(label="Elapsed Time", value="00:00:00", interactive=False)
            
            with gr.Column(scale=2):
                with gr.Row():
                    with gr.Column():
                        loss_plot = gr.Plot(label="Training Loss")
                    with gr.Column():
                        eval_plot = gr.Plot(label="Evaluation Metrics")
                
                training_log = gr.Textbox(
                    label="Training Log",
                    interactive=False,
                    lines=10
                )
                
                with gr.Accordion("Sample Generations", open=True):
                    sample_outputs = gr.Dataframe(
                        headers=["Prompt", "Generated Text", "Reference"],
                        label="Sample Model Outputs",
                        wrap=True
                    )
        
        # Timer for UI updates
        ui_update_interval = gr.Number(value=1, visible=False)
        
        def start_training_handler(current_state):
            # Validate state
            if current_state["processed_dataset"] is None:
                return (
                    current_state,
                    gr.update(value="⚠️ Please process a dataset first", elem_classes=["feedback-div", "error"]),
                    gr.update(interactive=True),
                    gr.update(interactive=False)
                )
            
            if current_state["training_params"] is None:
                return (
                    current_state,
                    gr.update(value="⚠️ Please configure training parameters first", elem_classes=["feedback-div", "error"]),
                    gr.update(interactive=True),
                    gr.update(interactive=False)
                )
            
            # Start training in a background thread
            try:
                train_thread = start_fine_tuning(
                    model_name=current_state["model_name"],
                    dataset=current_state["processed_dataset"],
                    params=current_state["training_params"]
                )
                
                current_state = current_state.copy()
                current_state["training_thread"] = train_thread
                
                return (
                    current_state,
                    gr.update(value="✅ Training started", elem_classes=["feedback-div", "success"]),
                    gr.update(interactive=False),
                    gr.update(interactive=True)
                )
            except Exception as e:
                return (
                    current_state,
                    gr.update(value=f"⚠️ Error starting training: {str(e)}", elem_classes=["feedback-div", "error"]),
                    gr.update(interactive=True),
                    gr.update(interactive=False)
                )
        
        def stop_training_handler(current_state):
            if "training_thread" in current_state and current_state["training_thread"] is not None:
                # Signal the training thread to stop
                current_state["training_thread"].stop()
                
                current_state = current_state.copy()
                current_state["training_thread"] = None
                
                return (
                    current_state,
                    gr.update(value="⚠️ Training stopped by user", elem_classes=["feedback-div", "error"]),
                    gr.update(interactive=True),
                    gr.update(interactive=False)
                )
            else:
                return (
                    current_state,
                    gr.update(value="⚠️ No active training to stop", elem_classes=["feedback-div", "error"]),
                    gr.update(interactive=True),
                    gr.update(interactive=False)
                )
        
        def update_training_ui():
            training_state = load_training_state()
            
            if training_state is None:
                return (
                    0, 0, 0, "00:00:00", None, None, "", None,
                    gr.update(value="Not started", elem_classes=["feedback-div", "info"])
                )
            
            # Calculate progress percentage
            total_steps = training_state["total_steps"]
            current_step = training_state["current_step"]
            progress_pct = (current_step / total_steps * 100) if total_steps > 0 else 0
            
            # Format elapsed time
            hours, remainder = divmod(training_state["elapsed_time"], 3600)
            minutes, seconds = divmod(remainder, 60)
            time_str = f"{int(hours):02d}:{int(minutes):02d}:{int(seconds):02d}"
            
            # Update status message
            if training_state["status"] == "completed":
                status_msg = gr.update(value="✅ Training completed successfully", elem_classes=["feedback-div", "success"])
            elif training_state["status"] == "error":
                status_msg = gr.update(value=f"⚠️ Training error: {training_state['error']}", elem_classes=["feedback-div", "error"])
            elif training_state["status"] == "stopped":
                status_msg = gr.update(value="⚠️ Training stopped by user", elem_classes=["feedback-div", "error"])
            else:
                status_msg = gr.update(value="⏳ Training in progress...", elem_classes=["feedback-div", "info"])
            
            return (
                progress_pct,
                training_state["current_epoch"],
                current_step,
                time_str,
                training_state["loss_plot"],
                training_state["eval_plot"],
                training_state["log"],
                training_state["samples"],
                status_msg
            )
        
        start_btn.click(
            start_training_handler,
            inputs=[state],
            outputs=[state, status, start_btn, stop_btn]
        )
        
        stop_btn.click(
            stop_training_handler,
            inputs=[state],
            outputs=[state, status, start_btn, stop_btn]
        )
        
        # Remove problematic JavaScript loading approach
        # Create a simple manual refresh button for compatibility
        manual_refresh = gr.Button("Refresh Status", visible=True)
        manual_refresh.click(
            update_training_ui,
            inputs=None,
            outputs=[
                progress, current_epoch, current_step, elapsed_time,
                loss_plot, eval_plot, training_log, sample_outputs, status
            ]
        )
        
        # Add auto-refresh functionality with HTML component
        auto_refresh = gr.HTML("""
        <script>
            // Auto-refresh the UI every second
            function setupAutoRefresh() {
                setInterval(function() {
                    const refreshButton = document.querySelector('button:contains("Refresh Status")');
                    if (refreshButton) {
                        refreshButton.click();
                    }
                }, 2000);
            }
            
            // Set up the auto-refresh when page loads
            if (window.addEventListener) {
                window.addEventListener('load', setupAutoRefresh, false);
            }
        </script>
        <p style="margin-top: 5px; font-size: 0.8em; color: #666;">Auto-refreshing status every 2 seconds</p>
        """)
        
        # Initial UI update
        demo.load(
            update_training_ui,
            inputs=None,
            outputs=[
                progress, current_epoch, current_step, elapsed_time,
                loss_plot, eval_plot, training_log, sample_outputs, status
            ]
        )
        
    with gr.Tab("Export Model"):
        gr.Markdown("## Export your fine-tuned model")
        
        with gr.Row():
            with gr.Column():
                export_format = gr.Radio(
                    ["PyTorch", "GGUF", "Safetensors"],
                    label="Export Format",
                    value="PyTorch"
                )
                
                quantization = gr.Dropdown(
                    ["None", "int8", "int4"],
                    label="Quantization (GGUF only)",
                    value="None",
                    interactive=True
                )
                
                model_name_input = gr.Textbox(
                    label="Model Name",
                    placeholder="my-fine-tuned-gemma",
                    value="my-fine-tuned-gemma"
                )
                
                output_dir = gr.Textbox(
                    label="Output Directory",
                    placeholder="Path to save the exported model",
                    value="./exports"
                )
                
                export_btn = gr.Button("Export Model", variant="primary")
            
            with gr.Column():
                export_info = gr.JSON(label="Export Information", visible=False)
                export_status = gr.Markdown(
                    "", 
                    elem_classes=["feedback-div"]
                )
                # Fix: Remove 'visible' parameter which is not supported in this Gradio version
                export_progress = gr.Progress()
        
        def export_model_handler(current_state, format, quant, name, out_dir):
            if current_state.get("fine_tuned_model_path") is None:
                return (
                    gr.update(value="⚠️ No fine-tuned model available. Please complete training first.", 
                             elem_classes=["feedback-div", "error"]),
                    None
                )
            
            try:
                # Actual export would be implemented in another function
                export_path = os.path.join(out_dir, name)
                os.makedirs(export_path, exist_ok=True)
                
                export_info = {
                    "format": format,
                    "quantization": quant if format == "GGUF" else "None",
                    "model_name": name,
                    "export_path": export_path,
                    "model_size": "0.5 GB",  # This would be calculated during actual export
                    "export_time": "00:01:23"  # This would be measured during actual export
                }
                
                return (
                    gr.update(value=f"✅ Model exported successfully to {export_path}", 
                             elem_classes=["feedback-div", "success"]),
                    export_info
                )
            except Exception as e:
                return (
                    gr.update(value=f"⚠️ Error exporting model: {str(e)}", 
                             elem_classes=["feedback-div", "error"]),
                    None
                )
        
        export_btn.click(
            export_model_handler,
            inputs=[state, export_format, quantization, model_name_input, output_dir],
            # Update outputs list to remove reference to progress visibility
            outputs=[export_status, export_info]
        )
        
    with gr.Tab("Documentation"):
        gr.Markdown("""
        # Gemma Fine-Tuning Documentation
        
        ## Supported Models
        
        This application supports fine-tuning the following Gemma models:
        
        - google/gemma-2-2b-it
        - google/gemma-2-9b-it
        - google/gemma-2-27b-it
        
        ## Dataset Format
        
        Your dataset should follow one of these formats:
        
        ### CSV
        ```
        prompt,completion
        "What is the capital of France?","The capital of France is Paris."
        "How does photosynthesis work?","Photosynthesis is the process..."
        ```
        
        ### JSONL
        ```
        {"prompt": "What is the capital of France?", "completion": "The capital of France is Paris."}
        {"prompt": "How does photosynthesis work?", "completion": "Photosynthesis is the process..."}
        ```
        
        ### Plain Text
        ```
        What is the capital of France?
        ###
        The capital of France is Paris.
        ###
        How does photosynthesis work?
        ###
        Photosynthesis is the process...
        ```
        
        ## Fine-Tuning Parameters
        
        ### Basic Parameters
        
        - **Learning Rate**: Controls how quickly the model adapts to the training data. Typical values range from 1e-5 to 5e-5.
        - **Batch Size**: Number of samples processed before model weights are updated. Higher values require more memory.
        - **Number of Epochs**: Number of complete passes through the training dataset. More epochs can lead to better results but may cause overfitting.
        - **Max Sequence Length**: Maximum length of input sequences. Longer sequences require more memory.
        
        ### Advanced Parameters
        
        - **Gradient Accumulation Steps**: Accumulate gradients over multiple batches to simulate larger batch size.
        - **Warmup Steps**: Number of steps for learning rate warmup. Helps stabilize training in the early phases.
        - **Weight Decay**: L2 regularization factor to prevent overfitting.
        - **LoRA Parameters**: Controls the behavior of LoRA (Low-Rank Adaptation), a parameter-efficient fine-tuning technique.
        
        ## Export Formats
        
        - **PyTorch**: Standard PyTorch model format (.pt or .bin files with model architecture).
        - **GGUF**: Compact format optimized for efficient inference (especially with llama.cpp).
        - **Safetensors**: Safe format for storing tensors, preventing arbitrary code execution.
        
        ## Quantization
        
        Quantization reduces model size and increases inference speed at the cost of some accuracy:
        
        - **None**: No quantization, full precision (usually FP16 or BF16).
        - **int8**: 8-bit integer quantization, good balance of speed and accuracy.
        - **int4**: 4-bit integer quantization, fastest but may reduce accuracy more significantly.
        """)

demo.launch()