Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -17,7 +17,8 @@ models = ["Helsinki-NLP",
|
|
| 17 |
"facebook/mbart-large-50-many-to-many-mmt",
|
| 18 |
"utter-project/EuroLLM-1.7B",
|
| 19 |
"Unbabel/TowerInstruct-7B-v0.2",
|
| 20 |
-
"Unbabel/TowerInstruct-Mistral-7B-v0.2"
|
|
|
|
| 21 |
]
|
| 22 |
|
| 23 |
def model_to_cuda(model):
|
|
@@ -29,6 +30,35 @@ def model_to_cuda(model):
|
|
| 29 |
print("CUDA not available! Using CPU.")
|
| 30 |
return model
|
| 31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
def eurollm(model_name, sl, tl, input_text):
|
| 33 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 34 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
|
@@ -67,6 +97,10 @@ def translate_text(input_text, sselected_language, tselected_language, model_nam
|
|
| 67 |
if 'eurollm' in model_name.lower():
|
| 68 |
translated_text = eurollm(model_name, sselected_language, tselected_language, input_text)
|
| 69 |
return translated_text, message_text
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
if 'nllb' in model_name.lower():
|
| 72 |
nnlbsl, nnlbtl = languagecodes.nllb_language_codes[sselected_language], languagecodes.nllb_language_codes[tselected_language]
|
|
|
|
| 17 |
"facebook/mbart-large-50-many-to-many-mmt",
|
| 18 |
"utter-project/EuroLLM-1.7B",
|
| 19 |
"Unbabel/TowerInstruct-7B-v0.2",
|
| 20 |
+
"Unbabel/TowerInstruct-Mistral-7B-v0.2",
|
| 21 |
+
"openGPT-X/Teuken-7B-instruct-commercial-v0.4"
|
| 22 |
]
|
| 23 |
|
| 24 |
def model_to_cuda(model):
|
|
|
|
| 30 |
print("CUDA not available! Using CPU.")
|
| 31 |
return model
|
| 32 |
|
| 33 |
+
def teuken(model_name, sl, tl, input_text):
|
| 34 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 35 |
+
# model_name = "openGPT-X/Teuken-7B-instruct-commercial-v0.4"
|
| 36 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 37 |
+
model_name,
|
| 38 |
+
trust_remote_code=True,
|
| 39 |
+
torch_dtype=torch.bfloat16,
|
| 40 |
+
)
|
| 41 |
+
model = model.to(device).eval()
|
| 42 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 43 |
+
model_name,
|
| 44 |
+
use_fast=False,
|
| 45 |
+
trust_remote_code=True,
|
| 46 |
+
)
|
| 47 |
+
translation_prompt = f"Translate the following text from {sl} into {tl}: {input_text}"
|
| 48 |
+
messages = [{"role": "User", "content": translation_prompt}]
|
| 49 |
+
prompt_ids = tokenizer.apply_chat_template(messages, chat_template=sl.upper(), tokenize=True, add_generation_prompt=True, return_tensors="pt")
|
| 50 |
+
prediction = model.generate(
|
| 51 |
+
prompt_ids.to(model.device),
|
| 52 |
+
max_length=512,
|
| 53 |
+
do_sample=True,
|
| 54 |
+
top_k=50,
|
| 55 |
+
top_p=0.95,
|
| 56 |
+
temperature=0.7,
|
| 57 |
+
num_return_sequences=1,
|
| 58 |
+
)
|
| 59 |
+
prediction_text = tokenizer.decode(prediction[0].tolist())
|
| 60 |
+
return prediction_text
|
| 61 |
+
|
| 62 |
def eurollm(model_name, sl, tl, input_text):
|
| 63 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 64 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
|
|
|
| 97 |
if 'eurollm' in model_name.lower():
|
| 98 |
translated_text = eurollm(model_name, sselected_language, tselected_language, input_text)
|
| 99 |
return translated_text, message_text
|
| 100 |
+
|
| 101 |
+
if 'teuken' in model_name.lower():
|
| 102 |
+
translated_text = eurollm(model_name, sselected_language, tselected_language, input_text)
|
| 103 |
+
return translated_text, message_text
|
| 104 |
|
| 105 |
if 'nllb' in model_name.lower():
|
| 106 |
nnlbsl, nnlbtl = languagecodes.nllb_language_codes[sselected_language], languagecodes.nllb_language_codes[tselected_language]
|