Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -28,16 +28,22 @@ def model_to_cuda(model):
|
|
| 28 |
print("CUDA not available! Using CPU.")
|
| 29 |
return model
|
| 30 |
|
| 31 |
-
def eurollm(
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
prompt = f"{sl}: {input_text}. {tl}:"
|
| 36 |
inputs = tokenizer(prompt, return_tensors="pt")
|
| 37 |
outputs = model.generate(**inputs, max_new_tokens=512)
|
| 38 |
output = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 39 |
-
|
| 40 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
@spaces.GPU
|
| 43 |
def translate_text(input_text, sselected_language, tselected_language, model_name):
|
|
@@ -61,12 +67,10 @@ def translate_text(input_text, sselected_language, tselected_language, model_nam
|
|
| 61 |
translated_text = eurollm(model_name, sselected_language, tselected_language, input_text)
|
| 62 |
return translated_text, message_text
|
| 63 |
|
| 64 |
-
if 'nllb' in model_name:
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
translated_text = translator(input_text, max_length=512)
|
| 69 |
-
return translated_text[0]['translation_text'], message_text
|
| 70 |
|
| 71 |
if model_name.startswith('facebook/mbart-large'):
|
| 72 |
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
|
|
@@ -113,7 +117,7 @@ def swap_languages(src_lang, tgt_lang):
|
|
| 113 |
|
| 114 |
def create_interface():
|
| 115 |
with gr.Blocks() as interface:
|
| 116 |
-
gr.Markdown("
|
| 117 |
|
| 118 |
with gr.Row():
|
| 119 |
input_text = gr.Textbox(label="Enter text to translate:", placeholder="Type your text here...")
|
|
|
|
| 28 |
print("CUDA not available! Using CPU.")
|
| 29 |
return model
|
| 30 |
|
| 31 |
+
def eurollm(model_name, sl, tl, input_text):
|
| 32 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 33 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 34 |
+
prompt = f"{sl}: {input_text} {tl}:"
|
|
|
|
| 35 |
inputs = tokenizer(prompt, return_tensors="pt")
|
| 36 |
outputs = model.generate(**inputs, max_new_tokens=512)
|
| 37 |
output = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 38 |
+
result = output.rsplit(f'{tl}:')[-1].strip())
|
| 39 |
+
return result
|
| 40 |
+
|
| 41 |
+
def nllb(model_name, sl, tl, input_text):
|
| 42 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, src_lang=sl)
|
| 43 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, device_map="auto")
|
| 44 |
+
translator = pipeline('translation', model=model, tokenizer=tokenizer, src_lang=sl, tgt_lang=tl)
|
| 45 |
+
translated_text = translator(input_text, max_length=512)
|
| 46 |
+
return translated_text[0]['translation_text']
|
| 47 |
|
| 48 |
@spaces.GPU
|
| 49 |
def translate_text(input_text, sselected_language, tselected_language, model_name):
|
|
|
|
| 67 |
translated_text = eurollm(model_name, sselected_language, tselected_language, input_text)
|
| 68 |
return translated_text, message_text
|
| 69 |
|
| 70 |
+
if 'nllb' in model_name.lower():
|
| 71 |
+
nnlbsl, nnlbtl = languagecodes.nllb_language_codes[sselected_language], languagecodes.nllb_language_codes[tselected_language]
|
| 72 |
+
translated_text = nllb(model_name, nnlbsl, nnlbtl, input_text)
|
| 73 |
+
return translated_text, message_text
|
|
|
|
|
|
|
| 74 |
|
| 75 |
if model_name.startswith('facebook/mbart-large'):
|
| 76 |
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
|
|
|
|
| 117 |
|
| 118 |
def create_interface():
|
| 119 |
with gr.Blocks() as interface:
|
| 120 |
+
gr.Markdown("### Machine Text Translation - maximum 512 tokens")
|
| 121 |
|
| 122 |
with gr.Row():
|
| 123 |
input_text = gr.Textbox(label="Enter text to translate:", placeholder="Type your text here...")
|