Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import AutoTokenizer
|
| 3 |
+
|
| 4 |
+
tokenizer = AutoTokenizer.from_pretrained("openai/gpt-oss-20b")
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def tokenize_dialogue(dialogue_data):
|
| 8 |
+
"""
|
| 9 |
+
Tokenize the dialogue using the GPT-OSS tokenizer
|
| 10 |
+
"""
|
| 11 |
+
if tokenizer is None:
|
| 12 |
+
raise ValueError("Tokenizer not loaded. Please check your installation.")
|
| 13 |
+
|
| 14 |
+
messages = []
|
| 15 |
+
for message in dialogue_data:
|
| 16 |
+
role = message.get("speaker", "user")
|
| 17 |
+
content = message.get("text", "")
|
| 18 |
+
|
| 19 |
+
if role == "system":
|
| 20 |
+
messages.append({"role": "system", "content": content})
|
| 21 |
+
elif role == "user":
|
| 22 |
+
messages.append({"role": "user", "content": content})
|
| 23 |
+
elif role == "assistant":
|
| 24 |
+
messages.append({"role": "assistant", "content": content})
|
| 25 |
+
|
| 26 |
+
formatted_input = tokenizer.apply_chat_template(
|
| 27 |
+
messages,
|
| 28 |
+
add_generation_prompt=True,
|
| 29 |
+
return_tensors="np"
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
token_ids = formatted_input[0].tolist()
|
| 33 |
+
decoded_text = []
|
| 34 |
+
colors = ["#FF6B6B", "#4ECDC4", "#45B7D1", "#96CEB4", "#FFEAA7"]
|
| 35 |
+
color_map = {}
|
| 36 |
+
|
| 37 |
+
for i, token_id in enumerate(token_ids):
|
| 38 |
+
color = colors[i % len(colors)]
|
| 39 |
+
if token_id not in color_map:
|
| 40 |
+
color_map[str(token_id)] = color
|
| 41 |
+
decoded_text.append((tokenizer.decode([token_id]), str(token_id)))
|
| 42 |
+
|
| 43 |
+
print("decoded_text", decoded_text)
|
| 44 |
+
|
| 45 |
+
return gr.HighlightedText(value=decoded_text, color_map=color_map), len(token_ids)
|
| 46 |
+
|
| 47 |
+
def create_sample_dialogue():
|
| 48 |
+
"""
|
| 49 |
+
Create a sample dialogue for demonstration
|
| 50 |
+
"""
|
| 51 |
+
return [
|
| 52 |
+
{"speaker": "system", "text": "You are a helpful assistant."},
|
| 53 |
+
{"speaker": "user", "text": "Hello! How are you today?"},
|
| 54 |
+
{"speaker": "assistant", "text": "I'm doing well, thank you for asking! How can I help you today?"},
|
| 55 |
+
{"speaker": "user", "text": "Can you explain what MXFP4 quantization is?"}
|
| 56 |
+
]
|
| 57 |
+
|
| 58 |
+
with gr.Blocks(title="GPT-OSS Tokenizer Explorer") as demo:
|
| 59 |
+
gr.Markdown("# GPT-OSS Tokenizer Explorer")
|
| 60 |
+
gr.Markdown("Enter a dialogue and see how the GPT-OSS tokenizer processes it. Use the format `speaker: message` in the dialogue component.")
|
| 61 |
+
|
| 62 |
+
with gr.Row():
|
| 63 |
+
with gr.Column(scale=1):
|
| 64 |
+
gr.Markdown("### Input Dialogue")
|
| 65 |
+
|
| 66 |
+
dialogue_input = gr.Dialogue(
|
| 67 |
+
speakers=["system", "user", "assistant"],
|
| 68 |
+
label="Enter your dialogue",
|
| 69 |
+
placeholder="Type 'system:', 'user:', or 'assistant:' followed by your message",
|
| 70 |
+
show_submit_button=True,
|
| 71 |
+
show_copy_button=True,
|
| 72 |
+
type="dialogue",
|
| 73 |
+
ui_mode="dialogue-only",
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
with gr.Row():
|
| 77 |
+
sample_btn = gr.Button("Load Sample", variant="secondary")
|
| 78 |
+
clear_btn = gr.Button("Clear", variant="secondary")
|
| 79 |
+
|
| 80 |
+
with gr.Column(scale=1):
|
| 81 |
+
gr.Markdown("### Tokenization Results")
|
| 82 |
+
|
| 83 |
+
highlighted_output = gr.HighlightedText(
|
| 84 |
+
label="Tokenized Output",
|
| 85 |
+
show_inline_category=False
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
token_count = gr.Label(
|
| 89 |
+
value="Total Tokens: 0",
|
| 90 |
+
label="Token Count"
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
with gr.Accordion("How to use", open=False):
|
| 94 |
+
gr.Markdown("""
|
| 95 |
+
### Instructions:
|
| 96 |
+
1. **Enter dialogue**: Use the dialogue component to enter conversations
|
| 97 |
+
2. **Speaker format**: Type `system:`, `user:`, or `assistant:` followed by your message
|
| 98 |
+
3. **Submit**: Click 'Tokenize Dialogue' to process the conversation
|
| 99 |
+
4. **View results**: See the tokenization details in the output area
|
| 100 |
+
|
| 101 |
+
### Example:
|
| 102 |
+
```
|
| 103 |
+
system: You are a helpful assistant.
|
| 104 |
+
user: Hello! How are you today?
|
| 105 |
+
assistant: I'm doing well, thank you for asking!
|
| 106 |
+
```
|
| 107 |
+
|
| 108 |
+
### What you'll see:
|
| 109 |
+
- **Total tokens**: Number of tokens in the conversation
|
| 110 |
+
- **Tokenized output**: How the tokenizer formats the conversation
|
| 111 |
+
""")
|
| 112 |
+
|
| 113 |
+
def process_dialogue(dialogue):
|
| 114 |
+
if not dialogue:
|
| 115 |
+
return "Please enter some dialogue first.", {}, "Total Tokens: 0"
|
| 116 |
+
|
| 117 |
+
result_text, token_count_val = tokenize_dialogue(dialogue)
|
| 118 |
+
|
| 119 |
+
return result_text, f"Total Tokens: {token_count_val}"
|
| 120 |
+
|
| 121 |
+
def clear_dialogue():
|
| 122 |
+
return None, [], "Total Tokens: 0"
|
| 123 |
+
|
| 124 |
+
sample_btn.click(
|
| 125 |
+
fn=create_sample_dialogue,
|
| 126 |
+
outputs=[dialogue_input]
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
+
clear_btn.click(
|
| 130 |
+
fn=clear_dialogue,
|
| 131 |
+
outputs=[dialogue_input, highlighted_output, token_count]
|
| 132 |
+
)
|
| 133 |
+
|
| 134 |
+
dialogue_input.submit(
|
| 135 |
+
fn=process_dialogue,
|
| 136 |
+
inputs=[dialogue_input],
|
| 137 |
+
outputs=[highlighted_output, token_count]
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
if __name__ == "__main__":
|
| 141 |
+
demo.launch()
|