Spaces:
Runtime error
Runtime error
Filip
commited on
Commit
·
fe01251
1
Parent(s):
56d8f41
update
Browse files
app.py
CHANGED
|
@@ -5,33 +5,42 @@ import gc
|
|
| 5 |
import os
|
| 6 |
|
| 7 |
# Enable better CPU performance
|
| 8 |
-
torch.set_num_threads(4)
|
| 9 |
device = "cpu"
|
| 10 |
|
| 11 |
def load_model():
|
| 12 |
model_name = "forestav/unsloth_vision_radiography_finetune"
|
|
|
|
| 13 |
|
| 14 |
-
# Load tokenizer and processor first to free up memory
|
| 15 |
print("Loading tokenizer and processor...")
|
| 16 |
-
tokenizer
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
print("Loading model...")
|
| 20 |
# Load model with CPU optimizations
|
| 21 |
model = AutoModelForCausalLM.from_pretrained(
|
| 22 |
model_name,
|
| 23 |
device_map="cpu",
|
| 24 |
-
torch_dtype=torch.float32,
|
| 25 |
low_cpu_mem_usage=True,
|
| 26 |
-
offload_folder="offload",
|
| 27 |
-
offload_state_dict=True
|
|
|
|
| 28 |
)
|
| 29 |
|
| 30 |
-
# Quantize the model for CPU
|
| 31 |
print("Quantizing model...")
|
| 32 |
model = torch.quantization.quantize_dynamic(
|
| 33 |
model,
|
| 34 |
-
{torch.nn.Linear},
|
| 35 |
dtype=torch.qint8
|
| 36 |
)
|
| 37 |
|
|
@@ -81,7 +90,7 @@ def analyze_image(image, instruction):
|
|
| 81 |
min_p=0.1,
|
| 82 |
use_cache=True,
|
| 83 |
pad_token_id=tokenizer.eos_token_id,
|
| 84 |
-
num_beams=1
|
| 85 |
)
|
| 86 |
|
| 87 |
# Decode the response
|
|
|
|
| 5 |
import os
|
| 6 |
|
| 7 |
# Enable better CPU performance
|
| 8 |
+
torch.set_num_threads(4)
|
| 9 |
device = "cpu"
|
| 10 |
|
| 11 |
def load_model():
|
| 12 |
model_name = "forestav/unsloth_vision_radiography_finetune"
|
| 13 |
+
base_model_name = "unsloth/Llama-3.2-11B-Vision-Instruct" # Correct base model
|
| 14 |
|
|
|
|
| 15 |
print("Loading tokenizer and processor...")
|
| 16 |
+
# Load tokenizer from base model
|
| 17 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 18 |
+
base_model_name,
|
| 19 |
+
trust_remote_code=True
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
# Load processor from base model
|
| 23 |
+
processor = AutoProcessor.from_pretrained(
|
| 24 |
+
base_model_name,
|
| 25 |
+
trust_remote_code=True
|
| 26 |
+
)
|
| 27 |
|
| 28 |
print("Loading model...")
|
| 29 |
# Load model with CPU optimizations
|
| 30 |
model = AutoModelForCausalLM.from_pretrained(
|
| 31 |
model_name,
|
| 32 |
device_map="cpu",
|
| 33 |
+
torch_dtype=torch.float32,
|
| 34 |
low_cpu_mem_usage=True,
|
| 35 |
+
offload_folder="offload",
|
| 36 |
+
offload_state_dict=True,
|
| 37 |
+
trust_remote_code=True
|
| 38 |
)
|
| 39 |
|
|
|
|
| 40 |
print("Quantizing model...")
|
| 41 |
model = torch.quantization.quantize_dynamic(
|
| 42 |
model,
|
| 43 |
+
{torch.nn.Linear},
|
| 44 |
dtype=torch.qint8
|
| 45 |
)
|
| 46 |
|
|
|
|
| 90 |
min_p=0.1,
|
| 91 |
use_cache=True,
|
| 92 |
pad_token_id=tokenizer.eos_token_id,
|
| 93 |
+
num_beams=1
|
| 94 |
)
|
| 95 |
|
| 96 |
# Decode the response
|