Spaces:
Runtime error
Runtime error
Commit
·
651aae3
1
Parent(s):
649375f
Delete mvdiffusion/data/objaverse_dataset.py
Browse files
mvdiffusion/data/objaverse_dataset.py
DELETED
|
@@ -1,608 +0,0 @@
|
|
| 1 |
-
from typing import Dict
|
| 2 |
-
import numpy as np
|
| 3 |
-
from omegaconf import DictConfig, ListConfig
|
| 4 |
-
import torch
|
| 5 |
-
from torch.utils.data import Dataset
|
| 6 |
-
from pathlib import Path
|
| 7 |
-
import json
|
| 8 |
-
from PIL import Image
|
| 9 |
-
from torchvision import transforms
|
| 10 |
-
from einops import rearrange
|
| 11 |
-
from typing import Literal, Tuple, Optional, Any
|
| 12 |
-
import cv2
|
| 13 |
-
import random
|
| 14 |
-
|
| 15 |
-
import json
|
| 16 |
-
import os, sys
|
| 17 |
-
import math
|
| 18 |
-
|
| 19 |
-
import PIL.Image
|
| 20 |
-
from .normal_utils import trans_normal, normal2img, img2normal
|
| 21 |
-
import pdb
|
| 22 |
-
|
| 23 |
-
def shift_list(lst, n):
|
| 24 |
-
length = len(lst)
|
| 25 |
-
n = n % length # Ensure n is within the range of the list length
|
| 26 |
-
return lst[-n:] + lst[:-n]
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
class ObjaverseDataset(Dataset):
|
| 30 |
-
def __init__(self,
|
| 31 |
-
root_dir: str,
|
| 32 |
-
num_views: int,
|
| 33 |
-
bg_color: Any,
|
| 34 |
-
img_wh: Tuple[int, int],
|
| 35 |
-
object_list: str,
|
| 36 |
-
groups_num: int=1,
|
| 37 |
-
validation: bool = False,
|
| 38 |
-
random_views: bool = False,
|
| 39 |
-
num_validation_samples: int = 64,
|
| 40 |
-
num_samples: Optional[int] = None,
|
| 41 |
-
invalid_list: Optional[str] = None,
|
| 42 |
-
trans_norm_system: bool = True, # if True, transform all normals map into the cam system of front view
|
| 43 |
-
augment_data: bool = False,
|
| 44 |
-
read_normal: bool = True,
|
| 45 |
-
read_color: bool = False,
|
| 46 |
-
read_depth: bool = False,
|
| 47 |
-
mix_color_normal: bool = False,
|
| 48 |
-
random_view_and_domain: bool = False
|
| 49 |
-
) -> None:
|
| 50 |
-
"""Create a dataset from a folder of images.
|
| 51 |
-
If you pass in a root directory it will be searched for images
|
| 52 |
-
ending in ext (ext can be a list)
|
| 53 |
-
"""
|
| 54 |
-
self.root_dir = Path(root_dir)
|
| 55 |
-
self.num_views = num_views
|
| 56 |
-
self.bg_color = bg_color
|
| 57 |
-
self.validation = validation
|
| 58 |
-
self.num_samples = num_samples
|
| 59 |
-
self.trans_norm_system = trans_norm_system
|
| 60 |
-
self.augment_data = augment_data
|
| 61 |
-
self.invalid_list = invalid_list
|
| 62 |
-
self.groups_num = groups_num
|
| 63 |
-
print("augment data: ", self.augment_data)
|
| 64 |
-
self.img_wh = img_wh
|
| 65 |
-
self.read_normal = read_normal
|
| 66 |
-
self.read_color = read_color
|
| 67 |
-
self.read_depth = read_depth
|
| 68 |
-
self.mix_color_normal = mix_color_normal # mix load color and normal maps
|
| 69 |
-
self.random_view_and_domain = random_view_and_domain # load normal or rgb of a single view
|
| 70 |
-
self.random_views = random_views
|
| 71 |
-
if not self.random_views:
|
| 72 |
-
if self.num_views == 4:
|
| 73 |
-
self.view_types = ['front', 'right', 'back', 'left']
|
| 74 |
-
elif self.num_views == 5:
|
| 75 |
-
self.view_types = ['front', 'front_right', 'right', 'back', 'left']
|
| 76 |
-
elif self.num_views == 6 or self.num_views==1:
|
| 77 |
-
self.view_types = ['front', 'front_right', 'right', 'back', 'left', 'front_left']
|
| 78 |
-
else:
|
| 79 |
-
self.view_types = ['front', 'front_right', 'right', 'back', 'left', 'front_left']
|
| 80 |
-
|
| 81 |
-
self.fix_cam_pose_dir = "./mvdiffusion/data/fixed_poses/nine_views"
|
| 82 |
-
|
| 83 |
-
self.fix_cam_poses = self.load_fixed_poses() # world2cam matrix
|
| 84 |
-
|
| 85 |
-
if object_list is not None:
|
| 86 |
-
with open(object_list) as f:
|
| 87 |
-
self.objects = json.load(f)
|
| 88 |
-
self.objects = [os.path.basename(o).replace(".glb", "") for o in self.objects]
|
| 89 |
-
else:
|
| 90 |
-
self.objects = os.listdir(self.root_dir)
|
| 91 |
-
self.objects = sorted(self.objects)
|
| 92 |
-
|
| 93 |
-
if self.invalid_list is not None:
|
| 94 |
-
with open(self.invalid_list) as f:
|
| 95 |
-
self.invalid_objects = json.load(f)
|
| 96 |
-
self.invalid_objects = [os.path.basename(o).replace(".glb", "") for o in self.invalid_objects]
|
| 97 |
-
else:
|
| 98 |
-
self.invalid_objects = []
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
self.all_objects = set(self.objects) - (set(self.invalid_objects) & set(self.objects))
|
| 102 |
-
self.all_objects = list(self.all_objects)
|
| 103 |
-
|
| 104 |
-
if not validation:
|
| 105 |
-
self.all_objects = self.all_objects[:-num_validation_samples]
|
| 106 |
-
else:
|
| 107 |
-
self.all_objects = self.all_objects[-num_validation_samples:]
|
| 108 |
-
if num_samples is not None:
|
| 109 |
-
self.all_objects = self.all_objects[:num_samples]
|
| 110 |
-
|
| 111 |
-
print("loading ", len(self.all_objects), " objects in the dataset")
|
| 112 |
-
|
| 113 |
-
if self.mix_color_normal:
|
| 114 |
-
self.backup_data = self.__getitem_mix__(0, "9438abf986c7453a9f4df7c34aa2e65b")
|
| 115 |
-
elif self.random_view_and_domain:
|
| 116 |
-
self.backup_data = self.__getitem_random_viewanddomain__(0, "9438abf986c7453a9f4df7c34aa2e65b")
|
| 117 |
-
else:
|
| 118 |
-
self.backup_data = self.__getitem_norm__(0, "9438abf986c7453a9f4df7c34aa2e65b") # "66b2134b7e3645b29d7c349645291f78")
|
| 119 |
-
|
| 120 |
-
def __len__(self):
|
| 121 |
-
return len(self.objects)*self.total_view
|
| 122 |
-
|
| 123 |
-
def load_fixed_poses(self):
|
| 124 |
-
poses = {}
|
| 125 |
-
for face in self.view_types:
|
| 126 |
-
RT = np.loadtxt(os.path.join(self.fix_cam_pose_dir,'%03d_%s_RT.txt'%(0, face)))
|
| 127 |
-
poses[face] = RT
|
| 128 |
-
|
| 129 |
-
return poses
|
| 130 |
-
|
| 131 |
-
def cartesian_to_spherical(self, xyz):
|
| 132 |
-
ptsnew = np.hstack((xyz, np.zeros(xyz.shape)))
|
| 133 |
-
xy = xyz[:,0]**2 + xyz[:,1]**2
|
| 134 |
-
z = np.sqrt(xy + xyz[:,2]**2)
|
| 135 |
-
theta = np.arctan2(np.sqrt(xy), xyz[:,2]) # for elevation angle defined from Z-axis down
|
| 136 |
-
#ptsnew[:,4] = np.arctan2(xyz[:,2], np.sqrt(xy)) # for elevation angle defined from XY-plane up
|
| 137 |
-
azimuth = np.arctan2(xyz[:,1], xyz[:,0])
|
| 138 |
-
return np.array([theta, azimuth, z])
|
| 139 |
-
|
| 140 |
-
def get_T(self, target_RT, cond_RT):
|
| 141 |
-
R, T = target_RT[:3, :3], target_RT[:, -1]
|
| 142 |
-
T_target = -R.T @ T # change to cam2world
|
| 143 |
-
|
| 144 |
-
R, T = cond_RT[:3, :3], cond_RT[:, -1]
|
| 145 |
-
T_cond = -R.T @ T
|
| 146 |
-
|
| 147 |
-
theta_cond, azimuth_cond, z_cond = self.cartesian_to_spherical(T_cond[None, :])
|
| 148 |
-
theta_target, azimuth_target, z_target = self.cartesian_to_spherical(T_target[None, :])
|
| 149 |
-
|
| 150 |
-
d_theta = theta_target - theta_cond
|
| 151 |
-
d_azimuth = (azimuth_target - azimuth_cond) % (2 * math.pi)
|
| 152 |
-
d_z = z_target - z_cond
|
| 153 |
-
|
| 154 |
-
# d_T = torch.tensor([d_theta.item(), math.sin(d_azimuth.item()), math.cos(d_azimuth.item()), d_z.item()])
|
| 155 |
-
return d_theta, d_azimuth
|
| 156 |
-
|
| 157 |
-
def get_bg_color(self):
|
| 158 |
-
if self.bg_color == 'white':
|
| 159 |
-
bg_color = np.array([1., 1., 1.], dtype=np.float32)
|
| 160 |
-
elif self.bg_color == 'black':
|
| 161 |
-
bg_color = np.array([0., 0., 0.], dtype=np.float32)
|
| 162 |
-
elif self.bg_color == 'gray':
|
| 163 |
-
bg_color = np.array([0.5, 0.5, 0.5], dtype=np.float32)
|
| 164 |
-
elif self.bg_color == 'random':
|
| 165 |
-
bg_color = np.random.rand(3)
|
| 166 |
-
elif self.bg_color == 'three_choices':
|
| 167 |
-
white = np.array([1., 1., 1.], dtype=np.float32)
|
| 168 |
-
black = np.array([0., 0., 0.], dtype=np.float32)
|
| 169 |
-
gray = np.array([0.5, 0.5, 0.5], dtype=np.float32)
|
| 170 |
-
bg_color = random.choice([white, black, gray])
|
| 171 |
-
elif isinstance(self.bg_color, float):
|
| 172 |
-
bg_color = np.array([self.bg_color] * 3, dtype=np.float32)
|
| 173 |
-
else:
|
| 174 |
-
raise NotImplementedError
|
| 175 |
-
return bg_color
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
def load_mask(self, img_path, return_type='np'):
|
| 180 |
-
# not using cv2 as may load in uint16 format
|
| 181 |
-
# img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED) # [0, 255]
|
| 182 |
-
# img = cv2.resize(img, self.img_wh, interpolation=cv2.INTER_CUBIC)
|
| 183 |
-
# pil always returns uint8
|
| 184 |
-
img = np.array(Image.open(img_path).resize(self.img_wh))
|
| 185 |
-
img = np.float32(img > 0)
|
| 186 |
-
|
| 187 |
-
assert len(np.shape(img)) == 2
|
| 188 |
-
|
| 189 |
-
if return_type == "np":
|
| 190 |
-
pass
|
| 191 |
-
elif return_type == "pt":
|
| 192 |
-
img = torch.from_numpy(img)
|
| 193 |
-
else:
|
| 194 |
-
raise NotImplementedError
|
| 195 |
-
|
| 196 |
-
return img
|
| 197 |
-
|
| 198 |
-
def load_image(self, img_path, bg_color, alpha, return_type='np'):
|
| 199 |
-
# not using cv2 as may load in uint16 format
|
| 200 |
-
# img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED) # [0, 255]
|
| 201 |
-
# img = cv2.resize(img, self.img_wh, interpolation=cv2.INTER_CUBIC)
|
| 202 |
-
# pil always returns uint8
|
| 203 |
-
img = np.array(Image.open(img_path).resize(self.img_wh))
|
| 204 |
-
img = img.astype(np.float32) / 255. # [0, 1]
|
| 205 |
-
assert img.shape[-1] == 3 # RGB
|
| 206 |
-
|
| 207 |
-
if alpha.shape[-1] != 1:
|
| 208 |
-
alpha = alpha[:, :, None]
|
| 209 |
-
|
| 210 |
-
img = img[...,:3] * alpha + bg_color * (1 - alpha)
|
| 211 |
-
|
| 212 |
-
if return_type == "np":
|
| 213 |
-
pass
|
| 214 |
-
elif return_type == "pt":
|
| 215 |
-
img = torch.from_numpy(img)
|
| 216 |
-
else:
|
| 217 |
-
raise NotImplementedError
|
| 218 |
-
|
| 219 |
-
return img
|
| 220 |
-
|
| 221 |
-
def load_depth(self, img_path, bg_color, alpha, return_type='np'):
|
| 222 |
-
# not using cv2 as may load in uint16 format
|
| 223 |
-
# img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED) # [0, 255]
|
| 224 |
-
# img = cv2.resize(img, self.img_wh, interpolation=cv2.INTER_CUBIC)
|
| 225 |
-
# pil always returns uint8
|
| 226 |
-
img = np.array(Image.open(img_path).resize(self.img_wh))
|
| 227 |
-
img = img.astype(np.float32) / 65535. # [0, 1]
|
| 228 |
-
|
| 229 |
-
img[img > 0.4] = 0
|
| 230 |
-
img = img / 0.4
|
| 231 |
-
|
| 232 |
-
assert img.ndim == 2 # depth
|
| 233 |
-
img = np.stack([img]*3, axis=-1)
|
| 234 |
-
|
| 235 |
-
if alpha.shape[-1] != 1:
|
| 236 |
-
alpha = alpha[:, :, None]
|
| 237 |
-
|
| 238 |
-
# print(np.max(img[:, :, 0]))
|
| 239 |
-
|
| 240 |
-
img = img[...,:3] * alpha + bg_color * (1 - alpha)
|
| 241 |
-
|
| 242 |
-
if return_type == "np":
|
| 243 |
-
pass
|
| 244 |
-
elif return_type == "pt":
|
| 245 |
-
img = torch.from_numpy(img)
|
| 246 |
-
else:
|
| 247 |
-
raise NotImplementedError
|
| 248 |
-
|
| 249 |
-
return img
|
| 250 |
-
|
| 251 |
-
def load_normal(self, img_path, bg_color, alpha, RT_w2c=None, RT_w2c_cond=None, return_type='np'):
|
| 252 |
-
# not using cv2 as may load in uint16 format
|
| 253 |
-
# img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED) # [0, 255]
|
| 254 |
-
# img = cv2.resize(img, self.img_wh, interpolation=cv2.INTER_CUBIC)
|
| 255 |
-
# pil always returns uint8
|
| 256 |
-
normal = np.array(Image.open(img_path).resize(self.img_wh))
|
| 257 |
-
|
| 258 |
-
assert normal.shape[-1] == 3 # RGB
|
| 259 |
-
|
| 260 |
-
normal = trans_normal(img2normal(normal), RT_w2c, RT_w2c_cond)
|
| 261 |
-
|
| 262 |
-
img = (normal*0.5 + 0.5).astype(np.float32) # [0, 1]
|
| 263 |
-
|
| 264 |
-
if alpha.shape[-1] != 1:
|
| 265 |
-
alpha = alpha[:, :, None]
|
| 266 |
-
|
| 267 |
-
img = img[...,:3] * alpha + bg_color * (1 - alpha)
|
| 268 |
-
|
| 269 |
-
if return_type == "np":
|
| 270 |
-
pass
|
| 271 |
-
elif return_type == "pt":
|
| 272 |
-
img = torch.from_numpy(img)
|
| 273 |
-
else:
|
| 274 |
-
raise NotImplementedError
|
| 275 |
-
|
| 276 |
-
return img
|
| 277 |
-
|
| 278 |
-
def __len__(self):
|
| 279 |
-
return len(self.all_objects)
|
| 280 |
-
|
| 281 |
-
def __getitem_mix__(self, index, debug_object=None):
|
| 282 |
-
if debug_object is not None:
|
| 283 |
-
object_name = debug_object #
|
| 284 |
-
set_idx = random.sample(range(0, self.groups_num), 1)[0] # without replacement
|
| 285 |
-
else:
|
| 286 |
-
object_name = self.all_objects[index%len(self.all_objects)]
|
| 287 |
-
set_idx = 0
|
| 288 |
-
|
| 289 |
-
if self.augment_data:
|
| 290 |
-
cond_view = random.sample(self.view_types, k=1)[0]
|
| 291 |
-
else:
|
| 292 |
-
cond_view = 'front'
|
| 293 |
-
|
| 294 |
-
if random.random() < 0.5:
|
| 295 |
-
read_color, read_normal, read_depth = True, False, False
|
| 296 |
-
else:
|
| 297 |
-
read_color, read_normal, read_depth = False, True, True
|
| 298 |
-
|
| 299 |
-
read_normal = read_normal & self.read_normal
|
| 300 |
-
read_depth = read_depth & self.read_depth
|
| 301 |
-
|
| 302 |
-
assert (read_color and (read_normal or read_depth)) is False
|
| 303 |
-
|
| 304 |
-
view_types = self.view_types
|
| 305 |
-
|
| 306 |
-
cond_w2c = self.fix_cam_poses[cond_view]
|
| 307 |
-
|
| 308 |
-
tgt_w2cs = [self.fix_cam_poses[view] for view in view_types]
|
| 309 |
-
|
| 310 |
-
elevations = []
|
| 311 |
-
azimuths = []
|
| 312 |
-
|
| 313 |
-
# get the bg color
|
| 314 |
-
bg_color = self.get_bg_color()
|
| 315 |
-
|
| 316 |
-
cond_alpha = self.load_mask(os.path.join(self.root_dir, object_name[:3], object_name, "mask_%03d_%s.png" % (set_idx, cond_view)), return_type='np')
|
| 317 |
-
img_tensors_in = [
|
| 318 |
-
self.load_image(os.path.join(self.root_dir, object_name[:3], object_name, "rgb_%03d_%s.png" % (set_idx, cond_view)), bg_color, cond_alpha, return_type='pt').permute(2, 0, 1)
|
| 319 |
-
] * self.num_views
|
| 320 |
-
img_tensors_out = []
|
| 321 |
-
|
| 322 |
-
for view, tgt_w2c in zip(view_types, tgt_w2cs):
|
| 323 |
-
img_path = os.path.join(self.root_dir, object_name[:3], object_name, "rgb_%03d_%s.png" % (set_idx, view))
|
| 324 |
-
mask_path = os.path.join(self.root_dir, object_name[:3], object_name, "mask_%03d_%s.png" % (set_idx, view))
|
| 325 |
-
normal_path = os.path.join(self.root_dir, object_name[:3], object_name, "normals_%03d_%s.png" % (set_idx, view))
|
| 326 |
-
depth_path = os.path.join(self.root_dir, object_name[:3], object_name, "depth_%03d_%s.png" % (set_idx, view))
|
| 327 |
-
alpha = self.load_mask(mask_path, return_type='np')
|
| 328 |
-
|
| 329 |
-
if read_color:
|
| 330 |
-
img_tensor = self.load_image(img_path, bg_color, alpha, return_type="pt")
|
| 331 |
-
img_tensor = img_tensor.permute(2, 0, 1)
|
| 332 |
-
img_tensors_out.append(img_tensor)
|
| 333 |
-
|
| 334 |
-
if read_normal:
|
| 335 |
-
normal_tensor = self.load_normal(normal_path, bg_color, alpha, RT_w2c=tgt_w2c, RT_w2c_cond=cond_w2c, return_type="pt").permute(2, 0, 1)
|
| 336 |
-
img_tensors_out.append(normal_tensor)
|
| 337 |
-
if read_depth:
|
| 338 |
-
depth_tensor = self.load_depth(depth_path, bg_color, alpha, return_type="pt").permute(2, 0, 1)
|
| 339 |
-
img_tensors_out.append(depth_tensor)
|
| 340 |
-
|
| 341 |
-
# evelations, azimuths
|
| 342 |
-
elevation, azimuth = self.get_T(tgt_w2c, cond_w2c)
|
| 343 |
-
elevations.append(elevation)
|
| 344 |
-
azimuths.append(azimuth)
|
| 345 |
-
|
| 346 |
-
img_tensors_in = torch.stack(img_tensors_in, dim=0).float() # (Nv, 3, H, W)
|
| 347 |
-
img_tensors_out = torch.stack(img_tensors_out, dim=0).float() # (Nv, 3, H, W)
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
elevations = torch.as_tensor(elevations).float().squeeze(1)
|
| 351 |
-
azimuths = torch.as_tensor(azimuths).float().squeeze(1)
|
| 352 |
-
elevations_cond = torch.as_tensor([0] * self.num_views).float() # fixed only use 4 views to train
|
| 353 |
-
camera_embeddings = torch.stack([elevations_cond, elevations, azimuths], dim=-1) # (Nv, 3)
|
| 354 |
-
|
| 355 |
-
normal_class = torch.tensor([1, 0]).float()
|
| 356 |
-
normal_task_embeddings = torch.stack([normal_class]*self.num_views, dim=0) # (Nv, 2)
|
| 357 |
-
color_class = torch.tensor([0, 1]).float()
|
| 358 |
-
color_task_embeddings = torch.stack([color_class]*self.num_views, dim=0) # (Nv, 2)
|
| 359 |
-
if read_normal or read_depth:
|
| 360 |
-
task_embeddings = normal_task_embeddings
|
| 361 |
-
if read_color:
|
| 362 |
-
task_embeddings = color_task_embeddings
|
| 363 |
-
|
| 364 |
-
return {
|
| 365 |
-
'elevations_cond': elevations_cond,
|
| 366 |
-
'elevations_cond_deg': torch.rad2deg(elevations_cond),
|
| 367 |
-
'elevations': elevations,
|
| 368 |
-
'azimuths': azimuths,
|
| 369 |
-
'elevations_deg': torch.rad2deg(elevations),
|
| 370 |
-
'azimuths_deg': torch.rad2deg(azimuths),
|
| 371 |
-
'imgs_in': img_tensors_in,
|
| 372 |
-
'imgs_out': img_tensors_out,
|
| 373 |
-
'camera_embeddings': camera_embeddings,
|
| 374 |
-
'task_embeddings': task_embeddings
|
| 375 |
-
}
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
def __getitem_random_viewanddomain__(self, index, debug_object=None):
|
| 379 |
-
if debug_object is not None:
|
| 380 |
-
object_name = debug_object #
|
| 381 |
-
set_idx = random.sample(range(0, self.groups_num), 1)[0] # without replacement
|
| 382 |
-
else:
|
| 383 |
-
object_name = self.all_objects[index%len(self.all_objects)]
|
| 384 |
-
set_idx = 0
|
| 385 |
-
|
| 386 |
-
if self.augment_data:
|
| 387 |
-
cond_view = random.sample(self.view_types, k=1)[0]
|
| 388 |
-
else:
|
| 389 |
-
cond_view = 'front'
|
| 390 |
-
|
| 391 |
-
if random.random() < 0.5:
|
| 392 |
-
read_color, read_normal, read_depth = True, False, False
|
| 393 |
-
else:
|
| 394 |
-
read_color, read_normal, read_depth = False, True, True
|
| 395 |
-
|
| 396 |
-
read_normal = read_normal & self.read_normal
|
| 397 |
-
read_depth = read_depth & self.read_depth
|
| 398 |
-
|
| 399 |
-
assert (read_color and (read_normal or read_depth)) is False
|
| 400 |
-
|
| 401 |
-
view_types = self.view_types
|
| 402 |
-
|
| 403 |
-
cond_w2c = self.fix_cam_poses[cond_view]
|
| 404 |
-
|
| 405 |
-
tgt_w2cs = [self.fix_cam_poses[view] for view in view_types]
|
| 406 |
-
|
| 407 |
-
elevations = []
|
| 408 |
-
azimuths = []
|
| 409 |
-
|
| 410 |
-
# get the bg color
|
| 411 |
-
bg_color = self.get_bg_color()
|
| 412 |
-
|
| 413 |
-
cond_alpha = self.load_mask(os.path.join(self.root_dir, object_name[:3], object_name, "mask_%03d_%s.png" % (set_idx, cond_view)), return_type='np')
|
| 414 |
-
img_tensors_in = [
|
| 415 |
-
self.load_image(os.path.join(self.root_dir, object_name[:3], object_name, "rgb_%03d_%s.png" % (set_idx, cond_view)), bg_color, cond_alpha, return_type='pt').permute(2, 0, 1)
|
| 416 |
-
] * self.num_views
|
| 417 |
-
img_tensors_out = []
|
| 418 |
-
|
| 419 |
-
random_viewidx = random.randint(0, len(view_types)-1)
|
| 420 |
-
|
| 421 |
-
for view, tgt_w2c in zip([view_types[random_viewidx]], [tgt_w2cs[random_viewidx]]):
|
| 422 |
-
img_path = os.path.join(self.root_dir, object_name[:3], object_name, "rgb_%03d_%s.png" % (set_idx, view))
|
| 423 |
-
mask_path = os.path.join(self.root_dir, object_name[:3], object_name, "mask_%03d_%s.png" % (set_idx, view))
|
| 424 |
-
normal_path = os.path.join(self.root_dir, object_name[:3], object_name, "normals_%03d_%s.png" % (set_idx, view))
|
| 425 |
-
depth_path = os.path.join(self.root_dir, object_name[:3], object_name, "depth_%03d_%s.png" % (set_idx, view))
|
| 426 |
-
alpha = self.load_mask(mask_path, return_type='np')
|
| 427 |
-
|
| 428 |
-
if read_color:
|
| 429 |
-
img_tensor = self.load_image(img_path, bg_color, alpha, return_type="pt")
|
| 430 |
-
img_tensor = img_tensor.permute(2, 0, 1)
|
| 431 |
-
img_tensors_out.append(img_tensor)
|
| 432 |
-
|
| 433 |
-
if read_normal:
|
| 434 |
-
normal_tensor = self.load_normal(normal_path, bg_color, alpha, RT_w2c=tgt_w2c, RT_w2c_cond=cond_w2c, return_type="pt").permute(2, 0, 1)
|
| 435 |
-
img_tensors_out.append(normal_tensor)
|
| 436 |
-
if read_depth:
|
| 437 |
-
depth_tensor = self.load_depth(depth_path, bg_color, alpha, return_type="pt").permute(2, 0, 1)
|
| 438 |
-
img_tensors_out.append(depth_tensor)
|
| 439 |
-
|
| 440 |
-
# evelations, azimuths
|
| 441 |
-
elevation, azimuth = self.get_T(tgt_w2c, cond_w2c)
|
| 442 |
-
elevations.append(elevation)
|
| 443 |
-
azimuths.append(azimuth)
|
| 444 |
-
|
| 445 |
-
img_tensors_in = torch.stack(img_tensors_in, dim=0).float() # (Nv, 3, H, W)
|
| 446 |
-
img_tensors_out = torch.stack(img_tensors_out, dim=0).float() # (Nv, 3, H, W)
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
elevations = torch.as_tensor(elevations).float().squeeze(1)
|
| 450 |
-
azimuths = torch.as_tensor(azimuths).float().squeeze(1)
|
| 451 |
-
elevations_cond = torch.as_tensor([0] * self.num_views).float() # fixed only use 4 views to train
|
| 452 |
-
camera_embeddings = torch.stack([elevations_cond, elevations, azimuths], dim=-1) # (Nv, 3)
|
| 453 |
-
|
| 454 |
-
normal_class = torch.tensor([1, 0]).float()
|
| 455 |
-
normal_task_embeddings = torch.stack([normal_class]*self.num_views, dim=0) # (Nv, 2)
|
| 456 |
-
color_class = torch.tensor([0, 1]).float()
|
| 457 |
-
color_task_embeddings = torch.stack([color_class]*self.num_views, dim=0) # (Nv, 2)
|
| 458 |
-
if read_normal or read_depth:
|
| 459 |
-
task_embeddings = normal_task_embeddings
|
| 460 |
-
if read_color:
|
| 461 |
-
task_embeddings = color_task_embeddings
|
| 462 |
-
|
| 463 |
-
return {
|
| 464 |
-
'elevations_cond': elevations_cond,
|
| 465 |
-
'elevations_cond_deg': torch.rad2deg(elevations_cond),
|
| 466 |
-
'elevations': elevations,
|
| 467 |
-
'azimuths': azimuths,
|
| 468 |
-
'elevations_deg': torch.rad2deg(elevations),
|
| 469 |
-
'azimuths_deg': torch.rad2deg(azimuths),
|
| 470 |
-
'imgs_in': img_tensors_in,
|
| 471 |
-
'imgs_out': img_tensors_out,
|
| 472 |
-
'camera_embeddings': camera_embeddings,
|
| 473 |
-
'task_embeddings': task_embeddings
|
| 474 |
-
}
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
def __getitem_norm__(self, index, debug_object=None):
|
| 478 |
-
if debug_object is not None:
|
| 479 |
-
object_name = debug_object #
|
| 480 |
-
set_idx = random.sample(range(0, self.groups_num), 1)[0] # without replacement
|
| 481 |
-
else:
|
| 482 |
-
object_name = self.all_objects[index%len(self.all_objects)]
|
| 483 |
-
set_idx = 0
|
| 484 |
-
|
| 485 |
-
if self.augment_data:
|
| 486 |
-
cond_view = random.sample(self.view_types, k=1)[0]
|
| 487 |
-
else:
|
| 488 |
-
cond_view = 'front'
|
| 489 |
-
|
| 490 |
-
# if self.random_views:
|
| 491 |
-
# view_types = ['front']+random.sample(self.view_types[1:], 3)
|
| 492 |
-
# else:
|
| 493 |
-
# view_types = self.view_types
|
| 494 |
-
|
| 495 |
-
view_types = self.view_types
|
| 496 |
-
|
| 497 |
-
cond_w2c = self.fix_cam_poses[cond_view]
|
| 498 |
-
|
| 499 |
-
tgt_w2cs = [self.fix_cam_poses[view] for view in view_types]
|
| 500 |
-
|
| 501 |
-
elevations = []
|
| 502 |
-
azimuths = []
|
| 503 |
-
|
| 504 |
-
# get the bg color
|
| 505 |
-
bg_color = self.get_bg_color()
|
| 506 |
-
|
| 507 |
-
cond_alpha = self.load_mask(os.path.join(self.root_dir, object_name[:3], object_name, "mask_%03d_%s.png" % (set_idx, cond_view)), return_type='np')
|
| 508 |
-
img_tensors_in = [
|
| 509 |
-
self.load_image(os.path.join(self.root_dir, object_name[:3], object_name, "rgb_%03d_%s.png" % (set_idx, cond_view)), bg_color, cond_alpha, return_type='pt').permute(2, 0, 1)
|
| 510 |
-
] * self.num_views
|
| 511 |
-
img_tensors_out = []
|
| 512 |
-
normal_tensors_out = []
|
| 513 |
-
for view, tgt_w2c in zip(view_types, tgt_w2cs):
|
| 514 |
-
img_path = os.path.join(self.root_dir, object_name[:3], object_name, "rgb_%03d_%s.png" % (set_idx, view))
|
| 515 |
-
mask_path = os.path.join(self.root_dir, object_name[:3], object_name, "mask_%03d_%s.png" % (set_idx, view))
|
| 516 |
-
alpha = self.load_mask(mask_path, return_type='np')
|
| 517 |
-
|
| 518 |
-
if self.read_color:
|
| 519 |
-
img_tensor = self.load_image(img_path, bg_color, alpha, return_type="pt")
|
| 520 |
-
img_tensor = img_tensor.permute(2, 0, 1)
|
| 521 |
-
img_tensors_out.append(img_tensor)
|
| 522 |
-
|
| 523 |
-
if self.read_normal:
|
| 524 |
-
normal_path = os.path.join(self.root_dir, object_name[:3], object_name, "normals_%03d_%s.png" % (set_idx, view))
|
| 525 |
-
normal_tensor = self.load_normal(normal_path, bg_color, alpha, RT_w2c=tgt_w2c, RT_w2c_cond=cond_w2c, return_type="pt").permute(2, 0, 1)
|
| 526 |
-
normal_tensors_out.append(normal_tensor)
|
| 527 |
-
|
| 528 |
-
# evelations, azimuths
|
| 529 |
-
elevation, azimuth = self.get_T(tgt_w2c, cond_w2c)
|
| 530 |
-
elevations.append(elevation)
|
| 531 |
-
azimuths.append(azimuth)
|
| 532 |
-
|
| 533 |
-
img_tensors_in = torch.stack(img_tensors_in, dim=0).float() # (Nv, 3, H, W)
|
| 534 |
-
if self.read_color:
|
| 535 |
-
img_tensors_out = torch.stack(img_tensors_out, dim=0).float() # (Nv, 3, H, W)
|
| 536 |
-
if self.read_normal:
|
| 537 |
-
normal_tensors_out = torch.stack(normal_tensors_out, dim=0).float() # (Nv, 3, H, W)
|
| 538 |
-
|
| 539 |
-
elevations = torch.as_tensor(elevations).float().squeeze(1)
|
| 540 |
-
azimuths = torch.as_tensor(azimuths).float().squeeze(1)
|
| 541 |
-
elevations_cond = torch.as_tensor([0] * self.num_views).float() # fixed only use 4 views to train
|
| 542 |
-
|
| 543 |
-
camera_embeddings = torch.stack([elevations_cond, elevations, azimuths], dim=-1) # (Nv, 3)
|
| 544 |
-
|
| 545 |
-
normal_class = torch.tensor([1, 0]).float()
|
| 546 |
-
normal_task_embeddings = torch.stack([normal_class]*self.num_views, dim=0) # (Nv, 2)
|
| 547 |
-
color_class = torch.tensor([0, 1]).float()
|
| 548 |
-
color_task_embeddings = torch.stack([color_class]*self.num_views, dim=0) # (Nv, 2)
|
| 549 |
-
|
| 550 |
-
return {
|
| 551 |
-
'elevations_cond': elevations_cond,
|
| 552 |
-
'elevations_cond_deg': torch.rad2deg(elevations_cond),
|
| 553 |
-
'elevations': elevations,
|
| 554 |
-
'azimuths': azimuths,
|
| 555 |
-
'elevations_deg': torch.rad2deg(elevations),
|
| 556 |
-
'azimuths_deg': torch.rad2deg(azimuths),
|
| 557 |
-
'imgs_in': img_tensors_in,
|
| 558 |
-
'imgs_out': img_tensors_out,
|
| 559 |
-
'normals_out': normal_tensors_out,
|
| 560 |
-
'camera_embeddings': camera_embeddings,
|
| 561 |
-
'normal_task_embeddings': normal_task_embeddings,
|
| 562 |
-
'color_task_embeddings': color_task_embeddings
|
| 563 |
-
}
|
| 564 |
-
|
| 565 |
-
def __getitem__(self, index):
|
| 566 |
-
|
| 567 |
-
try:
|
| 568 |
-
if self.mix_color_normal:
|
| 569 |
-
data = self.__getitem_mix__(index)
|
| 570 |
-
elif self.random_view_and_domain:
|
| 571 |
-
data = self.__getitem_random_viewanddomain__(index)
|
| 572 |
-
else:
|
| 573 |
-
data = self.__getitem_norm__(index)
|
| 574 |
-
return data
|
| 575 |
-
except:
|
| 576 |
-
print("load error ", self.all_objects[index%len(self.all_objects)] )
|
| 577 |
-
return self.backup_data
|
| 578 |
-
|
| 579 |
-
|
| 580 |
-
class ConcatDataset(torch.utils.data.Dataset):
|
| 581 |
-
def __init__(self, datasets, weights):
|
| 582 |
-
self.datasets = datasets
|
| 583 |
-
self.weights = weights
|
| 584 |
-
self.num_datasets = len(datasets)
|
| 585 |
-
|
| 586 |
-
def __getitem__(self, i):
|
| 587 |
-
|
| 588 |
-
chosen = random.choices(self.datasets, self.weights, k=1)[0]
|
| 589 |
-
return chosen[i]
|
| 590 |
-
|
| 591 |
-
def __len__(self):
|
| 592 |
-
return max(len(d) for d in self.datasets)
|
| 593 |
-
|
| 594 |
-
if __name__ == "__main__":
|
| 595 |
-
train_dataset = ObjaverseDataset(
|
| 596 |
-
root_dir="/ghome/l5/xxlong/.objaverse/hf-objaverse-v1/renderings",
|
| 597 |
-
size=(128, 128),
|
| 598 |
-
ext="hdf5",
|
| 599 |
-
default_trans=torch.zeros(3),
|
| 600 |
-
return_paths=False,
|
| 601 |
-
total_view=8,
|
| 602 |
-
validation=False,
|
| 603 |
-
object_list=None,
|
| 604 |
-
views_mode='fourviews'
|
| 605 |
-
)
|
| 606 |
-
data0 = train_dataset[0]
|
| 607 |
-
data1 = train_dataset[50]
|
| 608 |
-
# print(data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|