Spaces:
Runtime error
Runtime error
Jiading Fang
commited on
Commit
·
2512c83
1
Parent(s):
68d536e
add app file for gradio
Browse files
app.py
ADDED
|
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import random
|
| 3 |
+
|
| 4 |
+
import numpy as np
|
| 5 |
+
import torch
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import matplotlib as mpl
|
| 8 |
+
import matplotlib.cm as cm
|
| 9 |
+
|
| 10 |
+
from vidar.core.wrapper import Wrapper
|
| 11 |
+
from vidar.utils.config import read_config
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def colormap_depth(depth_map):
|
| 15 |
+
# Input: depth_map -> HxW numpy array with depth values
|
| 16 |
+
# Output: colormapped_im -> HxW numpy array with colorcoded depth values
|
| 17 |
+
mask = depth_map!=0
|
| 18 |
+
disp_map = 1/depth_map
|
| 19 |
+
vmax = np.percentile(disp_map[mask], 95)
|
| 20 |
+
vmin = np.percentile(disp_map[mask], 5)
|
| 21 |
+
normalizer = mpl.colors.Normalize(vmin=vmin, vmax=vmax)
|
| 22 |
+
mapper = cm.ScalarMappable(norm=normalizer, cmap='magma')
|
| 23 |
+
mask = np.repeat(np.expand_dims(mask,-1), 3, -1)
|
| 24 |
+
colormapped_im = (mapper.to_rgba(disp_map)[:, :, :3] * 255).astype(np.uint8)
|
| 25 |
+
colormapped_im[~mask] = 255
|
| 26 |
+
return colormapped_im
|
| 27 |
+
|
| 28 |
+
def data_to_batch(data):
|
| 29 |
+
batch = data.copy()
|
| 30 |
+
batch['rgb'][0] = batch['rgb'][0].unsqueeze(0).unsqueeze(0)
|
| 31 |
+
batch['rgb'][1] = batch['rgb'][1].unsqueeze(0).unsqueeze(0)
|
| 32 |
+
batch['intrinsics'][0] = batch['intrinsics'][0].unsqueeze(0).unsqueeze(0)
|
| 33 |
+
batch['pose'][0] = batch['pose'][0].unsqueeze(0).unsqueeze(0)
|
| 34 |
+
batch['pose'][1] = batch['pose'][1].unsqueeze(0).unsqueeze(0)
|
| 35 |
+
batch['depth'][0] = batch['depth'][0].unsqueeze(0).unsqueeze(0)
|
| 36 |
+
batch['depth'][1] = batch['depth'][1].unsqueeze(0).unsqueeze(0)
|
| 37 |
+
|
| 38 |
+
return batch
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
os.environ['DIST_MODE'] = 'gpu' if torch.cuda.is_available() else 'cpu'
|
| 42 |
+
cfg_file_path = 'configs/papers/define/scannet_temporal_test_context_1.yaml'
|
| 43 |
+
cfg = read_config(cfg_file_path)
|
| 44 |
+
|
| 45 |
+
wrapper = Wrapper(cfg, verbose=True)
|
| 46 |
+
|
| 47 |
+
# print('arch: ', wrapper.arch)
|
| 48 |
+
# print('datasets: ', wrapper.datasets)
|
| 49 |
+
|
| 50 |
+
arch = wrapper.arch
|
| 51 |
+
arch.eval()
|
| 52 |
+
val_dataset = wrapper.datasets['validation'][0]
|
| 53 |
+
len_val_dataset = len(val_dataset)
|
| 54 |
+
# print('val datasets length: ', len_val_dataset)
|
| 55 |
+
|
| 56 |
+
# data_sample = val_dataset[0]
|
| 57 |
+
# batch = data_to_batch(data_sample)
|
| 58 |
+
# output = arch(batch, epoch=0)
|
| 59 |
+
# print('output: ', output)
|
| 60 |
+
|
| 61 |
+
# output_depth = output['predictions']['depth'][0][0]
|
| 62 |
+
# print('output_depth: ', output_depth)
|
| 63 |
+
# output_depth = output_depth.squeeze(0).squeeze(0).permute(1,2,0)
|
| 64 |
+
# print('output_depth shape: ', output_depth.shape)
|
| 65 |
+
|
| 66 |
+
def sample_data_idx():
|
| 67 |
+
return random.randint(0, len_val_dataset-1)
|
| 68 |
+
|
| 69 |
+
def display_images_from_idx(idx):
|
| 70 |
+
rgbs = val_dataset[int(idx)]['rgb']
|
| 71 |
+
return [np.array(rgb.permute(1,2,0)) for rgb in rgbs.values()]
|
| 72 |
+
|
| 73 |
+
def infer_depth_from_idx(idx):
|
| 74 |
+
data_sample = val_dataset[int(idx)]
|
| 75 |
+
batch = data_to_batch(data_sample)
|
| 76 |
+
output = arch(batch, epoch=0)
|
| 77 |
+
output_depths = output['predictions']['depth']
|
| 78 |
+
return [colormap_depth(output_depth[0].squeeze(0).squeeze(0).squeeze(0).detach().numpy()) for output_depth in output_depths.values()]
|
| 79 |
+
|
| 80 |
+
with gr.Blocks() as demo:
|
| 81 |
+
|
| 82 |
+
# layout
|
| 83 |
+
img_box = gr.Gallery(label="Sampled Images").style(grid=[2], height="auto")
|
| 84 |
+
data_idx_box = gr.Textbox(
|
| 85 |
+
label="Sampled Data Index",
|
| 86 |
+
placeholder="Number between {} and {}".format(0, len_val_dataset-1),
|
| 87 |
+
interactive=True
|
| 88 |
+
)
|
| 89 |
+
sample_btn = gr.Button('Sample Dataset')
|
| 90 |
+
|
| 91 |
+
depth_box = gr.Gallery(label="Infered Depth").style(grid=[2], height="auto")
|
| 92 |
+
infer_btn = gr.Button('Depth Infer')
|
| 93 |
+
|
| 94 |
+
# actions
|
| 95 |
+
sample_btn.click(
|
| 96 |
+
fn=sample_data_idx,
|
| 97 |
+
inputs=None,
|
| 98 |
+
outputs=data_idx_box
|
| 99 |
+
).success(
|
| 100 |
+
fn=display_images_from_idx,
|
| 101 |
+
inputs=data_idx_box,
|
| 102 |
+
outputs=img_box,
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
infer_btn.click(
|
| 106 |
+
fn=infer_depth_from_idx,
|
| 107 |
+
inputs=data_idx_box,
|
| 108 |
+
outputs=depth_box
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|