| from functools import lru_cache | |
| import torch | |
| from sentence_transformers import SentenceTransformer | |
| import numpy as np | |
| DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| class SBert: | |
| def __init__(self, path): | |
| self.model = SentenceTransformer(path, device=DEVICE) | |
| def __call__(self, x) -> np.ndarray: | |
| y = self.model.encode(x) | |
| return y | |