Spaces:
Running
on
Zero
Running
on
Zero
back to solo canny
Browse files
app.py
CHANGED
|
@@ -15,7 +15,10 @@ from diffusers.utils import load_image
|
|
| 15 |
|
| 16 |
# load pipeline
|
| 17 |
controlnet_canny = SD3ControlNetModel.from_pretrained("InstantX/SD3-Controlnet-Canny")
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
def resize_image(input_path, output_path, target_height):
|
| 21 |
# Open the input image
|
|
@@ -36,47 +39,21 @@ def resize_image(input_path, output_path, target_height):
|
|
| 36 |
|
| 37 |
return output_path, new_width, target_height
|
| 38 |
|
| 39 |
-
def show_hidden():
|
| 40 |
-
return gr.update(visible=True)
|
| 41 |
-
|
| 42 |
-
def load_pipeline(control_type, progress=gr.Progress(track_tqdm=True)):
|
| 43 |
-
global pipe_canny, pipe_tile
|
| 44 |
-
if control_type == "canny":
|
| 45 |
-
global pipe_canny
|
| 46 |
-
pipe_canny = StableDiffusion3ControlNetPipeline.from_pretrained(
|
| 47 |
-
"stabilityai/stable-diffusion-3-medium-diffusers",
|
| 48 |
-
controlnet=controlnet_canny
|
| 49 |
-
)
|
| 50 |
-
elif control_type == "tile":
|
| 51 |
-
global pipe_tile
|
| 52 |
-
pipe_tile = StableDiffusion3ControlNetPipeline.from_pretrained(
|
| 53 |
-
"stabilityai/stable-diffusion-3-medium-diffusers",
|
| 54 |
-
controlnet=controlnet_tile
|
| 55 |
-
)
|
| 56 |
-
return gr.update(value="pipeline ready", visible=True)
|
| 57 |
|
| 58 |
@spaces.GPU(duration=90)
|
| 59 |
-
def infer(image_in, prompt,
|
| 60 |
-
|
| 61 |
n_prompt = 'NSFW, nude, naked, porn, ugly'
|
| 62 |
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
image_to_canny = Image.fromarray(image_to_canny)
|
| 73 |
-
|
| 74 |
-
control_image = image_to_canny
|
| 75 |
-
|
| 76 |
-
elif control_type == "tile":
|
| 77 |
-
pipe = pipe_tile
|
| 78 |
-
pipe.to("cuda", torch.float16)
|
| 79 |
-
control_image = load_image(image_in)
|
| 80 |
|
| 81 |
# infer
|
| 82 |
image = pipe(
|
|
@@ -88,15 +65,11 @@ def infer(image_in, prompt, control_type, inference_steps, guidance_scale, contr
|
|
| 88 |
guidance_scale=guidance_scale,
|
| 89 |
).images[0]
|
| 90 |
|
| 91 |
-
if control_type == "canny":
|
| 92 |
-
|
| 93 |
-
image_redim, w, h = resize_image(image_in, "resized_input.jpg", 1024)
|
| 94 |
-
image = image.resize((w, h), Image.LANCZOS)
|
| 95 |
|
| 96 |
-
|
|
|
|
| 97 |
|
| 98 |
-
|
| 99 |
-
return image, gr.update(value=None, visible=False)
|
| 100 |
|
| 101 |
|
| 102 |
css="""
|
|
@@ -111,6 +84,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 111 |
# SD3 ControlNet
|
| 112 |
|
| 113 |
Experiment with Stable Diffusion 3 ControlNet models proposed and maintained by the InstantX team.<br />
|
|
|
|
| 114 |
""")
|
| 115 |
|
| 116 |
with gr.Column():
|
|
@@ -119,14 +93,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 119 |
with gr.Column():
|
| 120 |
image_in = gr.Image(label="Image reference", sources=["upload"], type="filepath")
|
| 121 |
prompt = gr.Textbox(label="Prompt")
|
| 122 |
-
|
| 123 |
-
label="Control type",
|
| 124 |
-
choices = [
|
| 125 |
-
"canny",
|
| 126 |
-
"tile"
|
| 127 |
-
],
|
| 128 |
-
value="canny"
|
| 129 |
-
)
|
| 130 |
with gr.Accordion("Advanced settings", open=False):
|
| 131 |
with gr.Column():
|
| 132 |
with gr.Row():
|
|
@@ -137,23 +104,14 @@ with gr.Blocks(css=css) as demo:
|
|
| 137 |
submit_canny_btn = gr.Button("Submit")
|
| 138 |
|
| 139 |
with gr.Column():
|
| 140 |
-
models = gr.Textbox(label="Plug-in pipes", visible=False)
|
| 141 |
result = gr.Image(label="Result")
|
| 142 |
canny_used = gr.Image(label="Preprocessed Canny", visible=False)
|
| 143 |
|
| 144 |
|
| 145 |
|
| 146 |
submit_canny_btn.click(
|
| 147 |
-
fn = show_hidden,
|
| 148 |
-
inputs = None,
|
| 149 |
-
outputs = [models]
|
| 150 |
-
).then(
|
| 151 |
-
fn = load_pipeline,
|
| 152 |
-
inputs = [control_type],
|
| 153 |
-
outputs = [models]
|
| 154 |
-
).then(
|
| 155 |
fn = infer,
|
| 156 |
-
inputs = [image_in, prompt,
|
| 157 |
outputs = [result, canny_used],
|
| 158 |
show_api=False
|
| 159 |
)
|
|
|
|
| 15 |
|
| 16 |
# load pipeline
|
| 17 |
controlnet_canny = SD3ControlNetModel.from_pretrained("InstantX/SD3-Controlnet-Canny")
|
| 18 |
+
pipe = StableDiffusion3ControlNetPipeline.from_pretrained(
|
| 19 |
+
"stabilityai/stable-diffusion-3-medium-diffusers",
|
| 20 |
+
controlnet=controlnet_canny
|
| 21 |
+
).to("cuda", torch.float16)
|
| 22 |
|
| 23 |
def resize_image(input_path, output_path, target_height):
|
| 24 |
# Open the input image
|
|
|
|
| 39 |
|
| 40 |
return output_path, new_width, target_height
|
| 41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
@spaces.GPU(duration=90)
|
| 44 |
+
def infer(image_in, prompt, inference_steps, guidance_scale, control_weight, progress=gr.Progress(track_tqdm=True)):
|
| 45 |
+
|
| 46 |
n_prompt = 'NSFW, nude, naked, porn, ugly'
|
| 47 |
|
| 48 |
+
# Canny preprocessing
|
| 49 |
+
image_to_canny = load_image(image_in)
|
| 50 |
+
image_to_canny = np.array(image_to_canny)
|
| 51 |
+
image_to_canny = cv2.Canny(image_to_canny, 100, 200)
|
| 52 |
+
image_to_canny = image_to_canny[:, :, None]
|
| 53 |
+
image_to_canny = np.concatenate([image_to_canny, image_to_canny, image_to_canny], axis=2)
|
| 54 |
+
image_to_canny = Image.fromarray(image_to_canny)
|
| 55 |
+
|
| 56 |
+
control_image = image_to_canny
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
# infer
|
| 59 |
image = pipe(
|
|
|
|
| 65 |
guidance_scale=guidance_scale,
|
| 66 |
).images[0]
|
| 67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
+
image_redim, w, h = resize_image(image_in, "resized_input.jpg", 1024)
|
| 70 |
+
image = image.resize((w, h), Image.LANCZOS)
|
| 71 |
|
| 72 |
+
return image, gr.update(value=image_to_canny, visible=True)
|
|
|
|
| 73 |
|
| 74 |
|
| 75 |
css="""
|
|
|
|
| 84 |
# SD3 ControlNet
|
| 85 |
|
| 86 |
Experiment with Stable Diffusion 3 ControlNet models proposed and maintained by the InstantX team.<br />
|
| 87 |
+
Model card: (InstantX/SD3-Controlnet-Canny)[https://huggingface.co/InstantX/SD3-Controlnet-Canny]
|
| 88 |
""")
|
| 89 |
|
| 90 |
with gr.Column():
|
|
|
|
| 93 |
with gr.Column():
|
| 94 |
image_in = gr.Image(label="Image reference", sources=["upload"], type="filepath")
|
| 95 |
prompt = gr.Textbox(label="Prompt")
|
| 96 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
with gr.Accordion("Advanced settings", open=False):
|
| 98 |
with gr.Column():
|
| 99 |
with gr.Row():
|
|
|
|
| 104 |
submit_canny_btn = gr.Button("Submit")
|
| 105 |
|
| 106 |
with gr.Column():
|
|
|
|
| 107 |
result = gr.Image(label="Result")
|
| 108 |
canny_used = gr.Image(label="Preprocessed Canny", visible=False)
|
| 109 |
|
| 110 |
|
| 111 |
|
| 112 |
submit_canny_btn.click(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
fn = infer,
|
| 114 |
+
inputs = [image_in, prompt, inference_steps, guidance_scale, control_weight],
|
| 115 |
outputs = [result, canny_used],
|
| 116 |
show_api=False
|
| 117 |
)
|