Update app.py
Browse files
app.py
CHANGED
|
@@ -6,7 +6,6 @@ from huggingface_hub import snapshot_download
|
|
| 6 |
import numpy as np
|
| 7 |
from scipy.io import wavfile
|
| 8 |
|
| 9 |
-
|
| 10 |
model_ids = [
|
| 11 |
'suno/bark',
|
| 12 |
]
|
|
@@ -49,12 +48,22 @@ def infer(prompt, input_wav_file):
|
|
| 49 |
|
| 50 |
# cloning a speaker.
|
| 51 |
# It assumes that you have a speaker file in `bark_voices/speaker_n/speaker.wav` or `bark_voices/speaker_n/speaker.npz`
|
| 52 |
-
output_dict = model.synthesize(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
print(output_dict)
|
| 54 |
|
| 55 |
sample_rate = 24000 # Replace with the actual sample rate
|
| 56 |
|
| 57 |
-
wavfile.write(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
# List all the files and subdirectories in the given directory
|
| 60 |
contents = os.listdir(f"bark_voices/{file_name}")
|
|
@@ -63,13 +72,27 @@ def infer(prompt, input_wav_file):
|
|
| 63 |
for item in contents:
|
| 64 |
print(item)
|
| 65 |
|
| 66 |
-
return "output.wav"
|
| 67 |
-
|
| 68 |
-
gr.Interface(
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
import numpy as np
|
| 7 |
from scipy.io import wavfile
|
| 8 |
|
|
|
|
| 9 |
model_ids = [
|
| 10 |
'suno/bark',
|
| 11 |
]
|
|
|
|
| 48 |
|
| 49 |
# cloning a speaker.
|
| 50 |
# It assumes that you have a speaker file in `bark_voices/speaker_n/speaker.wav` or `bark_voices/speaker_n/speaker.npz`
|
| 51 |
+
output_dict = model.synthesize(
|
| 52 |
+
text,
|
| 53 |
+
config,
|
| 54 |
+
speaker_id=f"{file_name}",
|
| 55 |
+
voice_dirs="bark_voices/"
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
print(output_dict)
|
| 59 |
|
| 60 |
sample_rate = 24000 # Replace with the actual sample rate
|
| 61 |
|
| 62 |
+
wavfile.write(
|
| 63 |
+
'output.wav',
|
| 64 |
+
sample_rate,
|
| 65 |
+
output_dict['wav']
|
| 66 |
+
)
|
| 67 |
|
| 68 |
# List all the files and subdirectories in the given directory
|
| 69 |
contents = os.listdir(f"bark_voices/{file_name}")
|
|
|
|
| 72 |
for item in contents:
|
| 73 |
print(item)
|
| 74 |
|
| 75 |
+
return "output.wav", f"bark_voices/{file_name}/{content[1]}"
|
| 76 |
+
|
| 77 |
+
gr.Interface(
|
| 78 |
+
fn=infer,
|
| 79 |
+
inputs=[
|
| 80 |
+
gr.Textbox(
|
| 81 |
+
label="Text to speech prompt"
|
| 82 |
+
),
|
| 83 |
+
gr.Audio(
|
| 84 |
+
label="WAV voice to clone",
|
| 85 |
+
type="filepath",
|
| 86 |
+
source="upload"
|
| 87 |
+
)
|
| 88 |
+
],
|
| 89 |
+
outputs=[
|
| 90 |
+
gr.Audio(
|
| 91 |
+
label="Text to speech output"
|
| 92 |
+
),
|
| 93 |
+
gr.File(
|
| 94 |
+
label=".npz file"
|
| 95 |
+
)
|
| 96 |
+
],
|
| 97 |
+
title="Instant Voice Cloning"
|
| 98 |
+
).launch()
|