Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| import numpy as np | |
| import neural_renderer as nr | |
| from core import path_config | |
| from models import SMPL | |
| class PartRenderer(): | |
| """Renderer used to render segmentation masks and part segmentations. | |
| Internally it uses the Neural 3D Mesh Renderer | |
| """ | |
| def __init__(self, focal_length=5000., render_res=224): | |
| # Parameters for rendering | |
| self.focal_length = focal_length | |
| self.render_res = render_res | |
| # We use Neural 3D mesh renderer for rendering masks and part segmentations | |
| self.neural_renderer = nr.Renderer( | |
| dist_coeffs=None, | |
| orig_size=self.render_res, | |
| image_size=render_res, | |
| light_intensity_ambient=1, | |
| light_intensity_directional=0, | |
| anti_aliasing=False | |
| ) | |
| self.faces = torch.from_numpy(SMPL(path_config.SMPL_MODEL_DIR).faces.astype(np.int32) | |
| ).cuda() | |
| textures = np.load(path_config.VERTEX_TEXTURE_FILE) | |
| self.textures = torch.from_numpy(textures).cuda().float() | |
| self.cube_parts = torch.cuda.FloatTensor(np.load(path_config.CUBE_PARTS_FILE)) | |
| def get_parts(self, parts, mask): | |
| """Process renderer part image to get body part indices.""" | |
| bn, c, h, w = parts.shape | |
| mask = mask.view(-1, 1) | |
| parts_index = torch.floor(100 * parts.permute(0, 2, 3, 1).contiguous().view(-1, 3)).long() | |
| parts = self.cube_parts[parts_index[:, 0], parts_index[:, 1], parts_index[:, 2], None] | |
| parts *= mask | |
| parts = parts.view(bn, h, w).long() | |
| return parts | |
| def __call__(self, vertices, camera): | |
| """Wrapper function for rendering process.""" | |
| # Estimate camera parameters given a fixed focal length | |
| cam_t = torch.stack( | |
| [ | |
| camera[:, 1], camera[:, 2], 2 * self.focal_length / | |
| (self.render_res * camera[:, 0] + 1e-9) | |
| ], | |
| dim=-1 | |
| ) | |
| batch_size = vertices.shape[0] | |
| K = torch.eye(3, device=vertices.device) | |
| K[0, 0] = self.focal_length | |
| K[1, 1] = self.focal_length | |
| K[2, 2] = 1 | |
| K[0, 2] = self.render_res / 2. | |
| K[1, 2] = self.render_res / 2. | |
| K = K[None, :, :].expand(batch_size, -1, -1) | |
| R = torch.eye(3, device=vertices.device)[None, :, :].expand(batch_size, -1, -1) | |
| faces = self.faces[None, :, :].expand(batch_size, -1, -1) | |
| parts, _, mask = self.neural_renderer( | |
| vertices, | |
| faces, | |
| textures=self.textures.expand(batch_size, -1, -1, -1, -1, -1), | |
| K=K, | |
| R=R, | |
| t=cam_t.unsqueeze(1) | |
| ) | |
| parts = self.get_parts(parts, mask) | |
| return mask, parts | |