Spaces:
Running
on
Zero
Running
on
Zero
| import argparse | |
| import os | |
| import random | |
| from datetime import datetime | |
| from pathlib import Path | |
| from typing import List | |
| import av | |
| import cv2 | |
| import numpy as np | |
| import torch | |
| import torchvision | |
| from diffusers import AutoencoderKL, DDIMScheduler | |
| from diffusers.pipelines.stable_diffusion import StableDiffusionPipeline | |
| from einops import repeat | |
| from omegaconf import OmegaConf | |
| from PIL import Image | |
| from torchvision import transforms | |
| from transformers import CLIPVisionModelWithProjection | |
| from src.models.unet_2d_condition import UNet2DConditionModel | |
| from src.models.unet_3d_echo import EchoUNet3DConditionModel | |
| from src.models.whisper.audio2feature import load_audio_model | |
| from src.pipelines.pipeline_echo_mimic_pose_acc import AudioPose2VideoPipeline | |
| from src.utils.util import get_fps, read_frames, save_videos_grid, crop_and_pad | |
| import sys | |
| from src.models.face_locator import FaceLocator | |
| from moviepy.editor import VideoFileClip, AudioFileClip | |
| from facenet_pytorch import MTCNN | |
| from src.utils.draw_utils import FaceMeshVisualizer | |
| import pickle | |
| def parse_args(): | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--config", type=str, default="./configs/prompts/animation_pose_acc.yaml") | |
| parser.add_argument("-W", type=int, default=512) | |
| parser.add_argument("-H", type=int, default=512) | |
| parser.add_argument("-L", type=int, default=160) | |
| parser.add_argument("--seed", type=int, default=420) | |
| parser.add_argument("--facemusk_dilation_ratio", type=float, default=0.1) | |
| parser.add_argument("--facecrop_dilation_ratio", type=float, default=0.5) | |
| parser.add_argument("--context_frames", type=int, default=12) | |
| parser.add_argument("--context_overlap", type=int, default=3) | |
| parser.add_argument("--cfg", type=float, default=1.0) | |
| parser.add_argument("--steps", type=int, default=6) | |
| parser.add_argument("--sample_rate", type=int, default=16000) | |
| parser.add_argument("--fps", type=int, default=24) | |
| parser.add_argument("--device", type=str, default="cuda") | |
| args = parser.parse_args() | |
| return args | |
| def select_face(det_bboxes, probs): | |
| ## max face from faces that the prob is above 0.8 | |
| ## box: xyxy | |
| filtered_bboxes = [] | |
| for bbox_i in range(len(det_bboxes)): | |
| if probs[bbox_i] > 0.8: | |
| filtered_bboxes.append(det_bboxes[bbox_i]) | |
| if len(filtered_bboxes) == 0: | |
| return None | |
| sorted_bboxes = sorted(filtered_bboxes, key=lambda x:(x[3]-x[1]) * (x[2] - x[0]), reverse=True) | |
| return sorted_bboxes[0] | |
| def main(): | |
| args = parse_args() | |
| config = OmegaConf.load(args.config) | |
| if config.weight_dtype == "fp16": | |
| weight_dtype = torch.float16 | |
| else: | |
| weight_dtype = torch.float32 | |
| device = args.device | |
| if device.__contains__("cuda") and not torch.cuda.is_available(): | |
| device = "cpu" | |
| inference_config_path = config.inference_config | |
| infer_config = OmegaConf.load(inference_config_path) | |
| ############# model_init started ############# | |
| ## vae init | |
| vae = AutoencoderKL.from_pretrained( | |
| config.pretrained_vae_path, | |
| ).to("cuda", dtype=weight_dtype) | |
| ## reference net init | |
| reference_unet = UNet2DConditionModel.from_pretrained( | |
| config.pretrained_base_model_path, | |
| subfolder="unet", | |
| ).to(dtype=weight_dtype, device=device) | |
| reference_unet.load_state_dict( | |
| torch.load(config.reference_unet_path, map_location="cpu"), | |
| ) | |
| ## denoising net init | |
| if os.path.exists(config.motion_module_path): | |
| ### stage1 + stage2 | |
| denoising_unet = EchoUNet3DConditionModel.from_pretrained_2d( | |
| config.pretrained_base_model_path, | |
| config.motion_module_path, | |
| subfolder="unet", | |
| unet_additional_kwargs=infer_config.unet_additional_kwargs, | |
| ).to(dtype=weight_dtype, device=device) | |
| else: | |
| ### only stage1 | |
| denoising_unet = EchoUNet3DConditionModel.from_pretrained_2d( | |
| config.pretrained_base_model_path, | |
| "", | |
| subfolder="unet", | |
| unet_additional_kwargs={ | |
| "use_motion_module": False, | |
| "unet_use_temporal_attention": False, | |
| "cross_attention_dim": infer_config.unet_additional_kwargs.cross_attention_dim | |
| } | |
| ).to(dtype=weight_dtype, device=device) | |
| denoising_unet.load_state_dict( | |
| torch.load(config.denoising_unet_path, map_location="cpu"), | |
| strict=False | |
| ) | |
| ## face locator init | |
| face_locator = FaceLocator(320, conditioning_channels=3, block_out_channels=(16, 32, 96, 256)).to( | |
| dtype=weight_dtype, device="cuda" | |
| ) | |
| face_locator.load_state_dict(torch.load(config.face_locator_path)) | |
| visualizer = FaceMeshVisualizer(draw_iris=False, draw_mouse=False) | |
| ### load audio processor params | |
| audio_processor = load_audio_model(model_path=config.audio_model_path, device=device) | |
| ### load face detector params | |
| face_detector = MTCNN(image_size=320, margin=0, min_face_size=20, thresholds=[0.6, 0.7, 0.7], factor=0.709, post_process=True, device=device) | |
| ############# model_init finished ############# | |
| width, height = args.W, args.H | |
| sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs) | |
| scheduler = DDIMScheduler(**sched_kwargs) | |
| pipe = AudioPose2VideoPipeline( | |
| vae=vae, | |
| reference_unet=reference_unet, | |
| denoising_unet=denoising_unet, | |
| audio_guider=audio_processor, | |
| face_locator=face_locator, | |
| scheduler=scheduler, | |
| ) | |
| pipe = pipe.to("cuda", dtype=weight_dtype) | |
| date_str = datetime.now().strftime("%Y%m%d") | |
| time_str = datetime.now().strftime("%H%M") | |
| save_dir_name = f"{time_str}--seed_{args.seed}-{args.W}x{args.H}" | |
| save_dir = Path(f"output/{date_str}/{save_dir_name}") | |
| save_dir.mkdir(exist_ok=True, parents=True) | |
| for ref_image_path in config["test_cases"].keys(): | |
| for file_path in config["test_cases"][ref_image_path]: | |
| if ".wav" in file_path: | |
| audio_path = file_path | |
| else: | |
| pose_dir = file_path | |
| if args.seed is not None and args.seed > -1: | |
| generator = torch.manual_seed(args.seed) | |
| else: | |
| generator = torch.manual_seed(random.randint(100, 1000000)) | |
| ref_name = Path(ref_image_path).stem | |
| audio_name = Path(audio_path).stem | |
| final_fps = args.fps | |
| ref_image_pil = Image.open(ref_image_path).convert("RGB") | |
| # ==================== face_locator ===================== | |
| pose_list = [] | |
| for index in range(len(os.listdir(pose_dir))): | |
| tgt_musk_path = os.path.join(pose_dir, f"{index}.pkl") | |
| with open(tgt_musk_path, "rb") as f: | |
| tgt_kpts = pickle.load(f) | |
| tgt_musk = visualizer.draw_landmarks((args.W, args.H), tgt_kpts) | |
| tgt_musk_pil = Image.fromarray(np.array(tgt_musk).astype(np.uint8)).convert('RGB') | |
| pose_list.append(torch.Tensor(np.array(tgt_musk_pil)).to(dtype=weight_dtype, device="cuda").permute(2,0,1) / 255.0) | |
| face_mask_tensor = torch.stack(pose_list, dim=1).unsqueeze(0) | |
| video = pipe( | |
| ref_image_pil, | |
| audio_path, | |
| face_mask_tensor, | |
| width, | |
| height, | |
| args.L, | |
| args.steps, | |
| args.cfg, | |
| generator=generator, | |
| audio_sample_rate=args.sample_rate, | |
| context_frames=12, | |
| fps=final_fps, | |
| context_overlap=3 | |
| ).videos | |
| final_length = min(video.shape[2], face_mask_tensor.shape[2]) | |
| video = torch.cat([video[:, :, :final_length, :, :], face_mask_tensor[:, :, :final_length, :, :].detach().cpu()], dim=-1) | |
| save_videos_grid( | |
| video, | |
| f"{save_dir}/{ref_name}_{audio_name}_{args.H}x{args.W}_{int(args.cfg)}_{time_str}.mp4", | |
| n_rows=2, | |
| fps=final_fps, | |
| ) | |
| from moviepy.editor import VideoFileClip, AudioFileClip | |
| video_clip = VideoFileClip(f"{save_dir}/{ref_name}_{audio_name}_{args.H}x{args.W}_{int(args.cfg)}_{time_str}.mp4") | |
| audio_clip = AudioFileClip(audio_path) | |
| video_clip = video_clip.set_audio(audio_clip) | |
| video_clip.write_videofile(f"{save_dir}/{ref_name}_{audio_name}_{args.H}x{args.W}_{int(args.cfg)}_{time_str}_withaudio.mp4", codec="libx264", audio_codec="aac") | |
| print(f"{save_dir}/{ref_name}_{audio_name}_{args.H}x{args.W}_{int(args.cfg)}_{time_str}_withaudio.mp4") | |
| if __name__ == "__main__": | |
| main() | |