Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -79,45 +79,6 @@ def resize_video(input_vid, output_vid, width, height, fps):
|
|
| 79 |
print(f"RESIZE VIDEO DONE!")
|
| 80 |
return output_vid
|
| 81 |
|
| 82 |
-
def normalize_and_save_video(input_video_path, output_video_path):
|
| 83 |
-
print(f"NORMALIZING ...")
|
| 84 |
-
cap = cv2.VideoCapture(input_video_path)
|
| 85 |
-
|
| 86 |
-
# Get video properties
|
| 87 |
-
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 88 |
-
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 89 |
-
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 90 |
-
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 91 |
-
|
| 92 |
-
# Create VideoWriter object to save the normalized video
|
| 93 |
-
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # Specify the codec (e.g., 'mp4v', 'XVID', 'MPEG')
|
| 94 |
-
out = cv2.VideoWriter(output_video_path, fourcc, fps, (width, height))
|
| 95 |
-
|
| 96 |
-
# Iterate through each frame in the video
|
| 97 |
-
for _ in range(frame_count):
|
| 98 |
-
ret, frame = cap.read()
|
| 99 |
-
if not ret:
|
| 100 |
-
break
|
| 101 |
-
|
| 102 |
-
# Convert frame to floating point
|
| 103 |
-
frame = frame.astype(np.float32)
|
| 104 |
-
|
| 105 |
-
# Normalize pixel values to the range [0, 1]
|
| 106 |
-
frame /= 255.0
|
| 107 |
-
|
| 108 |
-
# Convert normalized frame back to 8-bit unsigned integer
|
| 109 |
-
frame = (frame * 255.0).astype(np.uint8)
|
| 110 |
-
|
| 111 |
-
# Write the normalized frame to the output video file
|
| 112 |
-
out.write(frame)
|
| 113 |
-
|
| 114 |
-
# Release the VideoCapture and VideoWriter objects
|
| 115 |
-
cap.release()
|
| 116 |
-
out.release()
|
| 117 |
-
|
| 118 |
-
print(f"NORMALIZE DONE!")
|
| 119 |
-
return output_video_path
|
| 120 |
-
|
| 121 |
def make_nearest_multiple_of_32(number):
|
| 122 |
remainder = number % 32
|
| 123 |
if remainder <= 16:
|
|
@@ -163,10 +124,6 @@ def run_inference(prompt, video_path, condition, video_length, seed, steps):
|
|
| 163 |
# if video_length > resized_video_fcount :
|
| 164 |
# video_length = int((target_fps * video_length) / original_fps)
|
| 165 |
|
| 166 |
-
|
| 167 |
-
# normalize pixels
|
| 168 |
-
#normalized = normalize_and_save_video(resized, 'normalized.mp4')
|
| 169 |
-
|
| 170 |
output_path = 'output/'
|
| 171 |
os.makedirs(output_path, exist_ok=True)
|
| 172 |
|
|
@@ -196,6 +153,9 @@ def run_inference(prompt, video_path, condition, video_length, seed, steps):
|
|
| 196 |
#o_height = get_video_dimension(video_path)[1]
|
| 197 |
#resize_video(video_path_output, 'resized_final.mp4', o_width, o_height, target_fps)
|
| 198 |
|
|
|
|
|
|
|
|
|
|
| 199 |
print(f"FINISHED !")
|
| 200 |
return "done", video_path_output
|
| 201 |
|
|
|
|
| 79 |
print(f"RESIZE VIDEO DONE!")
|
| 80 |
return output_vid
|
| 81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
def make_nearest_multiple_of_32(number):
|
| 83 |
remainder = number % 32
|
| 84 |
if remainder <= 16:
|
|
|
|
| 124 |
# if video_length > resized_video_fcount :
|
| 125 |
# video_length = int((target_fps * video_length) / original_fps)
|
| 126 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
output_path = 'output/'
|
| 128 |
os.makedirs(output_path, exist_ok=True)
|
| 129 |
|
|
|
|
| 153 |
#o_height = get_video_dimension(video_path)[1]
|
| 154 |
#resize_video(video_path_output, 'resized_final.mp4', o_width, o_height, target_fps)
|
| 155 |
|
| 156 |
+
# Check generated video FPS
|
| 157 |
+
gen_fps = get_video_dimension(video_path_output)[2]
|
| 158 |
+
print(f"GEN VIDEO FPS: {gen_fps}")
|
| 159 |
print(f"FINISHED !")
|
| 160 |
return "done", video_path_output
|
| 161 |
|