Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,31 +1,7 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import os
|
| 3 |
-
import numpy as np
|
| 4 |
-
import argparse
|
| 5 |
-
import imageio
|
| 6 |
-
import torch
|
| 7 |
|
| 8 |
-
from
|
| 9 |
-
from diffusers import DDIMScheduler, AutoencoderKL
|
| 10 |
-
from transformers import CLIPTextModel, CLIPTokenizer
|
| 11 |
-
# from annotator.canny import CannyDetector
|
| 12 |
-
# from annotator.openpose import OpenposeDetector
|
| 13 |
-
# from annotator.midas import MidasDetector
|
| 14 |
-
# import sys
|
| 15 |
-
# sys.path.insert(0, ".")
|
| 16 |
-
from huggingface_hub import hf_hub_download, snapshot_download
|
| 17 |
-
import controlnet_aux
|
| 18 |
-
from controlnet_aux import OpenposeDetector, CannyDetector, MidasDetector
|
| 19 |
-
from controlnet_aux.open_pose.body import Body
|
| 20 |
-
|
| 21 |
-
from models.pipeline_controlvideo import ControlVideoPipeline
|
| 22 |
-
from models.util import save_videos_grid, read_video, get_annotation
|
| 23 |
-
from models.unet import UNet3DConditionModel
|
| 24 |
-
from models.controlnet import ControlNetModel3D
|
| 25 |
-
from models.RIFE.IFNet_HDv3 import IFNet
|
| 26 |
-
|
| 27 |
-
hf_token = os.environ.get('HF_TOKEN')
|
| 28 |
-
device = "cuda"
|
| 29 |
|
| 30 |
model_ids = [
|
| 31 |
'runwayml/stable-diffusion-v1-5',
|
|
@@ -37,122 +13,22 @@ for model_id in model_ids:
|
|
| 37 |
model_name = model_id.split('/')[-1]
|
| 38 |
snapshot_download(model_id, local_dir=f'checkpoints/{model_name}')
|
| 39 |
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
inter_path = "checkpoints/flownet.pkl"
|
| 43 |
-
controlnet_dict = {
|
| 44 |
-
"pose": "checkpoints/sd-controlnet-openpose",
|
| 45 |
-
"depth": "checkpoints/sd-controlnet-depth",
|
| 46 |
-
"canny": "checkpoints/sd-controlnet-canny",
|
| 47 |
-
}
|
| 48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
-
|
| 51 |
-
"
|
| 52 |
-
"depth": MidasDetector,
|
| 53 |
-
"canny": CannyDetector,
|
| 54 |
-
}
|
| 55 |
|
| 56 |
-
|
| 57 |
-
NEG_PROMPT = "longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer difits, cropped, worst quality, low quality, deformed body, bloated, ugly, unrealistic"
|
| 58 |
|
| 59 |
|
| 60 |
-
|
| 61 |
-
def get_args():
|
| 62 |
-
parser = argparse.ArgumentParser()
|
| 63 |
-
parser.add_argument("--prompt", type=str, required=True, help="Text description of target video")
|
| 64 |
-
parser.add_argument("--video_path", type=str, required=True, help="Path to a source video")
|
| 65 |
-
parser.add_argument("--output_path", type=str, default="./outputs", help="Directory of output")
|
| 66 |
-
parser.add_argument("--condition", type=str, default="depth", help="Condition of structure sequence")
|
| 67 |
-
parser.add_argument("--video_length", type=int, default=15, help="Length of synthesized video")
|
| 68 |
-
parser.add_argument("--height", type=int, default=512, help="Height of synthesized video, and should be a multiple of 32")
|
| 69 |
-
parser.add_argument("--width", type=int, default=512, help="Width of synthesized video, and should be a multiple of 32")
|
| 70 |
-
parser.add_argument("--smoother_steps", nargs='+', default=[19, 20], type=int, help="Timesteps at which using interleaved-frame smoother")
|
| 71 |
-
parser.add_argument("--is_long_video", action='store_true', help="Whether to use hierarchical sampler to produce long video")
|
| 72 |
-
parser.add_argument("--seed", type=int, default=42, help="Random seed of generator")
|
| 73 |
|
| 74 |
-
args = parser.parse_args()
|
| 75 |
-
return args
|
| 76 |
-
|
| 77 |
-
def infer(prompt, video_path, condition, video_length, is_long_video):
|
| 78 |
-
#args = get_args()
|
| 79 |
-
#os.makedirs(args.output_path, exist_ok=True)
|
| 80 |
-
|
| 81 |
-
# Height and width should be a multiple of 32
|
| 82 |
-
output_path = ""
|
| 83 |
-
height = 512
|
| 84 |
-
width = 512
|
| 85 |
-
height = (height // 32) * 32
|
| 86 |
-
width = (width // 32) * 32
|
| 87 |
-
smoother_steps = [19, 20]
|
| 88 |
-
is_long_video = False
|
| 89 |
-
seed = 42
|
| 90 |
-
|
| 91 |
-
if condition == "pose":
|
| 92 |
-
pretrained_model_or_path = "lllyasviel/ControlNet"
|
| 93 |
-
body_model_path = hf_hub_download(pretrained_model_or_path, "annotator/ckpts/body_pose_model.pth", cache_dir="checkpoints")
|
| 94 |
-
body_estimation = Body(body_model_path)
|
| 95 |
-
annotator = controlnet_parser_dict[condition](body_estimation)
|
| 96 |
-
else:
|
| 97 |
-
annotator = controlnet_parser_dict[condition]()
|
| 98 |
-
|
| 99 |
-
tokenizer = CLIPTokenizer.from_pretrained(sd_path, subfolder="tokenizer")
|
| 100 |
-
text_encoder = CLIPTextModel.from_pretrained(sd_path, subfolder="text_encoder").to(dtype=torch.float16)
|
| 101 |
-
vae = AutoencoderKL.from_pretrained(sd_path, subfolder="vae").to(dtype=torch.float16)
|
| 102 |
-
unet = UNet3DConditionModel.from_pretrained_2d(sd_path, subfolder="unet").to(dtype=torch.float16)
|
| 103 |
-
controlnet = ControlNetModel3D.from_pretrained_2d(controlnet_dict[condition]).to(dtype=torch.float16)
|
| 104 |
-
interpolater = IFNet(ckpt_path=inter_path).to(dtype=torch.float16)
|
| 105 |
-
scheduler=DDIMScheduler.from_pretrained(sd_path, subfolder="scheduler")
|
| 106 |
-
|
| 107 |
-
pipe = ControlVideoPipeline(
|
| 108 |
-
vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet,
|
| 109 |
-
controlnet=controlnet, interpolater=interpolater, scheduler=scheduler,
|
| 110 |
-
)
|
| 111 |
-
pipe.enable_vae_slicing()
|
| 112 |
-
pipe.enable_xformers_memory_efficient_attention()
|
| 113 |
-
pipe.to(device)
|
| 114 |
-
|
| 115 |
-
generator = torch.Generator(device="cuda")
|
| 116 |
-
generator.manual_seed(seed)
|
| 117 |
-
|
| 118 |
-
# Step 1. Read a video
|
| 119 |
-
video = read_video(video_path=video_path, video_length=video_length, width=width, height=height)
|
| 120 |
-
|
| 121 |
-
# Save source video
|
| 122 |
-
original_pixels = rearrange(video, "(b f) c h w -> b c f h w", b=1)
|
| 123 |
-
save_videos_grid(original_pixels, os.path.join(output_path, "source_video.mp4"), rescale=True)
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
# Step 2. Parse a video to conditional frames
|
| 127 |
-
pil_annotation = get_annotation(video, annotator)
|
| 128 |
-
if condition == "depth" and controlnet_aux.__version__ == '0.0.1':
|
| 129 |
-
pil_annotation = [pil_annot[0] for pil_annot in pil_annotation]
|
| 130 |
-
|
| 131 |
-
# Save condition video
|
| 132 |
-
video_cond = [np.array(p).astype(np.uint8) for p in pil_annotation]
|
| 133 |
-
imageio.mimsave(os.path.join(output_path, f"{condition}_condition.mp4"), video_cond, fps=8)
|
| 134 |
-
|
| 135 |
-
# Reduce memory (optional)
|
| 136 |
-
del annotator; torch.cuda.empty_cache()
|
| 137 |
-
|
| 138 |
-
# Step 3. inference
|
| 139 |
-
|
| 140 |
-
if is_long_video:
|
| 141 |
-
window_size = int(np.sqrt(video_length))
|
| 142 |
-
sample = pipe.generate_long_video(prompt + POS_PROMPT, video_length=video_length, frames=pil_annotation,
|
| 143 |
-
num_inference_steps=50, smooth_steps=args.smoother_steps, window_size=window_size,
|
| 144 |
-
generator=generator, guidance_scale=12.5, negative_prompt=NEG_PROMPT,
|
| 145 |
-
width=width, height=height
|
| 146 |
-
).videos
|
| 147 |
-
else:
|
| 148 |
-
sample = pipe(prompt + POS_PROMPT, video_length=video_length, frames=pil_annotation,
|
| 149 |
-
num_inference_steps=50, smooth_steps=args.smoother_steps,
|
| 150 |
-
generator=generator, guidance_scale=12.5, negative_prompt=NEG_PROMPT,
|
| 151 |
-
width=width, height=height
|
| 152 |
-
).videos
|
| 153 |
-
save_videos_grid(sample, f"{output_path}/{prompt}.mp4")
|
| 154 |
|
| 155 |
-
return f"{output_path}/{prompt}.mp4"
|
| 156 |
|
| 157 |
with gr.Blocks() as demo:
|
| 158 |
with gr.Column():
|
|
@@ -160,16 +36,16 @@ with gr.Blocks() as demo:
|
|
| 160 |
video_path = gr.Video(source="upload", type="filepath")
|
| 161 |
condition = gr.Textbox(label="Condition", value="depth")
|
| 162 |
video_length = gr.Slider(label="video length", minimum=1, maximum=15, step=1, value=2)
|
| 163 |
-
seed = gr.Number(label="seed", value=42)
|
| 164 |
submit_btn = gr.Button("Submit")
|
| 165 |
-
video_res = gr.Video(label="result")
|
|
|
|
| 166 |
|
| 167 |
-
submit_btn.click(fn=
|
| 168 |
inputs=[prompt,
|
| 169 |
video_path,
|
| 170 |
condition,
|
| 171 |
-
video_length
|
| 172 |
-
seed,
|
| 173 |
],
|
| 174 |
outputs=[video_res])
|
| 175 |
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
+
from huggingface_hub import snapshot_download
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
model_ids = [
|
| 7 |
'runwayml/stable-diffusion-v1-5',
|
|
|
|
| 13 |
model_name = model_id.split('/')[-1]
|
| 14 |
snapshot_download(model_id, local_dir=f'checkpoints/{model_name}')
|
| 15 |
|
| 16 |
+
import subprocess
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
+
def run_inference(prompt, video_path, condition, video_length):
|
| 19 |
+
command = "python inference.py --prompt prompt --condition condition --video_path video_path --output_path 'outputs/' --video_length video_length --smoother_steps 19 20"
|
| 20 |
+
output = subprocess.check_output(command, shell=True, text=True)
|
| 21 |
+
output = output.strip() # Remove any leading/trailing whitespace
|
| 22 |
|
| 23 |
+
# Process the output as needed
|
| 24 |
+
print("Command output:", output)
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
+
return "done"
|
|
|
|
| 27 |
|
| 28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
+
#return f"{output_path}/{prompt}.mp4"
|
| 32 |
|
| 33 |
with gr.Blocks() as demo:
|
| 34 |
with gr.Column():
|
|
|
|
| 36 |
video_path = gr.Video(source="upload", type="filepath")
|
| 37 |
condition = gr.Textbox(label="Condition", value="depth")
|
| 38 |
video_length = gr.Slider(label="video length", minimum=1, maximum=15, step=1, value=2)
|
| 39 |
+
#seed = gr.Number(label="seed", value=42)
|
| 40 |
submit_btn = gr.Button("Submit")
|
| 41 |
+
#video_res = gr.Video(label="result")
|
| 42 |
+
video_res = gr.Textbox(label="result")
|
| 43 |
|
| 44 |
+
submit_btn.click(fn=run_inference,
|
| 45 |
inputs=[prompt,
|
| 46 |
video_path,
|
| 47 |
condition,
|
| 48 |
+
video_length
|
|
|
|
| 49 |
],
|
| 50 |
outputs=[video_res])
|
| 51 |
|