Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -19,15 +19,11 @@ for model_id in model_ids:
|
|
| 19 |
|
| 20 |
|
| 21 |
|
| 22 |
-
def
|
| 23 |
-
video = cv2.VideoCapture(filepath)
|
| 24 |
-
fps = video.get(cv2.CAP_PROP_FPS)
|
| 25 |
frame_count = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 26 |
-
duration = frame_count / fps
|
| 27 |
-
width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 28 |
-
height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 29 |
video.release()
|
| 30 |
-
return gr.update(
|
| 31 |
|
| 32 |
def get_video_dimension(filepath):
|
| 33 |
video = cv2.VideoCapture(filepath)
|
|
@@ -38,40 +34,17 @@ def get_video_dimension(filepath):
|
|
| 38 |
video.release()
|
| 39 |
return width, height, fps, frame_count
|
| 40 |
|
| 41 |
-
def
|
| 42 |
-
remainder = number % 12
|
| 43 |
-
if remainder != 0:
|
| 44 |
-
adjustment = 12 - remainder
|
| 45 |
-
number += adjustment
|
| 46 |
-
return number
|
| 47 |
-
|
| 48 |
-
def resize_video(input_file):
|
| 49 |
-
# Load the video clip
|
| 50 |
-
clip = VideoFileClip(input_file)
|
| 51 |
-
print(f"WIDTH TARGET: 512")
|
| 52 |
-
# Calculate the aspect ratio
|
| 53 |
-
ratio = 512 / clip.size[0]
|
| 54 |
-
new_height = int(clip.size[1] * ratio)
|
| 55 |
-
new_height_adjusted = adjust_to_multiple_of_12(new_height)
|
| 56 |
-
new_width_adjusted = adjust_to_multiple_of_12(512)
|
| 57 |
-
print(f"OLD H: {new_height} | NEW H: {new_height_adjusted}")
|
| 58 |
-
print(f"OLD W: 512 | NEW W: {new_width_adjusted}")
|
| 59 |
-
|
| 60 |
-
# Close the video clip
|
| 61 |
-
clip.close()
|
| 62 |
-
|
| 63 |
# Open the input video file
|
| 64 |
-
video = cv2.VideoCapture(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
# Create a VideoWriter object to write the resized video
|
| 67 |
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # Codec for the output video
|
| 68 |
-
|
| 69 |
-
# Check if the file already exists
|
| 70 |
-
if os.path.exists('video_resized.mp4'):
|
| 71 |
-
# Delete the existing file
|
| 72 |
-
os.remove('video_resized.mp4')
|
| 73 |
-
|
| 74 |
-
output_video = cv2.VideoWriter('video_resized.mp4', fourcc, 8.0, (512, 512))
|
| 75 |
|
| 76 |
while True:
|
| 77 |
# Read a frame from the input video
|
|
@@ -80,7 +53,7 @@ def resize_video(input_file):
|
|
| 80 |
break
|
| 81 |
|
| 82 |
# Resize the frame to the desired dimensions
|
| 83 |
-
resized_frame = cv2.resize(frame, (
|
| 84 |
|
| 85 |
# Write the resized frame to the output video file
|
| 86 |
output_video.write(resized_frame)
|
|
@@ -89,56 +62,62 @@ def resize_video(input_file):
|
|
| 89 |
video.release()
|
| 90 |
output_video.release()
|
| 91 |
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
#final_video_resized = os.path.join(temp_output_path, 'video_resized.mp4')
|
| 95 |
-
test_w, test_h, fps, frame_count = get_video_dimension('video_resized.mp4')
|
| 96 |
-
print(f"resized clip dims : {test_w}, {test_h}, {fps}")
|
| 97 |
-
return gr.update(visible=False), gr.update(value='video_resized.mp4', visible=True), gr.update(maximum=frame_count)
|
| 98 |
-
|
| 99 |
-
def run_inference(prompt, video_path, condition, video_length):
|
| 100 |
|
| 101 |
-
|
| 102 |
-
|
| 103 |
|
| 104 |
-
|
| 105 |
-
|
|
|
|
| 106 |
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
# Delete the existing file
|
| 110 |
-
os.remove(video_path_output)
|
| 111 |
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
subprocess.run(command, shell=True)
|
| 117 |
|
| 118 |
-
|
| 119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
|
|
|
|
| 122 |
|
| 123 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
|
| 125 |
-
|
|
|
|
| 126 |
|
| 127 |
-
#
|
| 128 |
-
|
| 129 |
-
resized_vid = 'resized.mp4'
|
| 130 |
|
| 131 |
-
# Call the function to resize the video
|
| 132 |
-
video_path = resize_video(input_vid, resized_vid, width=512)
|
| 133 |
-
width, height, fps = get_video_dimension(video_path)
|
| 134 |
|
| 135 |
-
print(f"{width} x {height} | {fps}")
|
| 136 |
|
| 137 |
-
# Split the video into chunks mp4 of 12 frames at video fps
|
| 138 |
-
# Store chunks as mp4 paths in an array
|
| 139 |
|
| 140 |
-
# For each mp4 chunks in chunks arrays, run command
|
| 141 |
-
# store video result in processed chunks array
|
| 142 |
|
| 143 |
output_path = 'output/'
|
| 144 |
os.makedirs(output_path, exist_ok=True)
|
|
@@ -152,18 +131,18 @@ def run_inference_chunks(prompt, video_path, condition, video_length):
|
|
| 152 |
os.remove(video_path_output)
|
| 153 |
|
| 154 |
if video_length > 12:
|
| 155 |
-
command = f"python inference.py --prompt '{prompt}' --condition '{condition}' --video_path '{video_path}' --output_path '{output_path}' --width
|
| 156 |
else:
|
| 157 |
-
command = f"python inference.py --prompt '{prompt}' --condition '{condition}' --video_path '{video_path}' --output_path '{output_path}' --width
|
| 158 |
subprocess.run(command, shell=True)
|
| 159 |
|
| 160 |
# Construct the video path
|
| 161 |
video_path_output = os.path.join(output_path, f"{prompt}.mp4")
|
| 162 |
|
| 163 |
-
|
| 164 |
-
|
| 165 |
return "done", video_path_output
|
| 166 |
|
|
|
|
|
|
|
| 167 |
css="""
|
| 168 |
#col-container {max-width: 810px; margin-left: auto; margin-right: auto;}
|
| 169 |
"""
|
|
@@ -174,8 +153,8 @@ with gr.Blocks(css=css) as demo:
|
|
| 174 |
""")
|
| 175 |
with gr.Row():
|
| 176 |
with gr.Column():
|
| 177 |
-
video_in = gr.Video(source="upload", type="filepath", visible=True)
|
| 178 |
-
video_path = gr.Video(source="upload", type="filepath", visible=
|
| 179 |
prompt = gr.Textbox(label="prompt")
|
| 180 |
with gr.Row():
|
| 181 |
condition = gr.Dropdown(label="Condition", choices=["depth", "canny", "pose"], value="depth")
|
|
@@ -185,9 +164,9 @@ with gr.Blocks(css=css) as demo:
|
|
| 185 |
with gr.Column():
|
| 186 |
video_res = gr.Video(label="result")
|
| 187 |
status = gr.Textbox(label="result")
|
| 188 |
-
|
| 189 |
-
inputs=[
|
| 190 |
-
outputs=[
|
| 191 |
)
|
| 192 |
submit_btn.click(fn=run_inference,
|
| 193 |
inputs=[prompt,
|
|
|
|
| 19 |
|
| 20 |
|
| 21 |
|
| 22 |
+
def get_frame_count(filepath):
|
| 23 |
+
video = cv2.VideoCapture(filepath)
|
|
|
|
| 24 |
frame_count = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
|
|
|
|
|
|
|
|
|
|
| 25 |
video.release()
|
| 26 |
+
return gr.update(maximum=frame_count)
|
| 27 |
|
| 28 |
def get_video_dimension(filepath):
|
| 29 |
video = cv2.VideoCapture(filepath)
|
|
|
|
| 34 |
video.release()
|
| 35 |
return width, height, fps, frame_count
|
| 36 |
|
| 37 |
+
def resize_video(input_vid, output_vid, width, height, fps):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
# Open the input video file
|
| 39 |
+
video = cv2.VideoCapture(input_vid)
|
| 40 |
+
|
| 41 |
+
# Get the original video's width and height
|
| 42 |
+
original_width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 43 |
+
original_height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 44 |
|
| 45 |
# Create a VideoWriter object to write the resized video
|
| 46 |
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # Codec for the output video
|
| 47 |
+
output_video = cv2.VideoWriter(output_vid, fourcc, fps, (width, height))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
while True:
|
| 50 |
# Read a frame from the input video
|
|
|
|
| 53 |
break
|
| 54 |
|
| 55 |
# Resize the frame to the desired dimensions
|
| 56 |
+
resized_frame = cv2.resize(frame, (width, height))
|
| 57 |
|
| 58 |
# Write the resized frame to the output video file
|
| 59 |
output_video.write(resized_frame)
|
|
|
|
| 62 |
video.release()
|
| 63 |
output_video.release()
|
| 64 |
|
| 65 |
+
return output_vid
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
+
def chunkify(video_path, fps, nb_frames):
|
| 68 |
+
chunks_array = []
|
| 69 |
|
| 70 |
+
video_capture = cv2.VideoCapture(video_path)
|
| 71 |
+
chunk_start_frame = 0
|
| 72 |
+
frames_per_chunk = 12
|
| 73 |
|
| 74 |
+
while chunk_start_frame < nb_frames:
|
| 75 |
+
chunk_end_frame = min(chunk_start_frame + frames_per_chunk, total_frames)
|
|
|
|
|
|
|
| 76 |
|
| 77 |
+
video_capture.set(cv2.CAP_PROP_POS_FRAMES, chunk_start_frame)
|
| 78 |
+
success, frame = video_capture.read()
|
| 79 |
+
if not success:
|
| 80 |
+
break
|
|
|
|
| 81 |
|
| 82 |
+
chunk_name = f"chunk_{chunk_start_frame}-{chunk_end_frame}.mp4"
|
| 83 |
+
chunk_video = cv2.VideoWriter(chunk_name, cv2.VideoWriter_fourcc(*"mp4v"), fps, (frame.shape[1], frame.shape[0]))
|
| 84 |
+
|
| 85 |
+
for frame_number in range(chunk_start_frame, chunk_end_frame):
|
| 86 |
+
video_capture.set(cv2.CAP_PROP_POS_FRAMES, frame_number)
|
| 87 |
+
success, frame = video_capture.read()
|
| 88 |
+
if not success:
|
| 89 |
+
break
|
| 90 |
+
|
| 91 |
+
chunk_video.write(frame)
|
| 92 |
+
|
| 93 |
+
chunk_video.release()
|
| 94 |
+
chunks_array.append(chunk_name)
|
| 95 |
|
| 96 |
+
chunk_start_frame += frames_per_chunk
|
| 97 |
+
|
| 98 |
+
video_capture.release()
|
| 99 |
+
print(f"CHUNKS: {chunks_array}")
|
| 100 |
+
return chunks_array
|
| 101 |
+
|
| 102 |
|
| 103 |
+
def run_inference(prompt, video_path, condition, video_length):
|
| 104 |
|
| 105 |
+
# Get FPS of original video input
|
| 106 |
+
target_fps = get_video_dimension(video_path)[2]
|
| 107 |
+
print(f"INPUT FPS: {target_fps}")
|
| 108 |
+
|
| 109 |
+
# Count total frames according to fps
|
| 110 |
+
total_frames = get_video_dimension(video_path)[3]
|
| 111 |
|
| 112 |
+
# Resize the video
|
| 113 |
+
resized = resize_video(video_path, 'resized.mp4', 512, 512, target_fps)
|
| 114 |
|
| 115 |
+
# Chunkify the video into 12 frames chunks
|
| 116 |
+
chunks = chunkify(resized, target_fps, total_frames)
|
|
|
|
| 117 |
|
|
|
|
|
|
|
|
|
|
| 118 |
|
|
|
|
| 119 |
|
|
|
|
|
|
|
| 120 |
|
|
|
|
|
|
|
| 121 |
|
| 122 |
output_path = 'output/'
|
| 123 |
os.makedirs(output_path, exist_ok=True)
|
|
|
|
| 131 |
os.remove(video_path_output)
|
| 132 |
|
| 133 |
if video_length > 12:
|
| 134 |
+
command = f"python inference.py --prompt '{prompt}' --condition '{condition}' --video_path '{video_path}' --output_path '{output_path}' --width 512 --height 512 --fps 8 --video_length {video_length} --is_long_video"
|
| 135 |
else:
|
| 136 |
+
command = f"python inference.py --prompt '{prompt}' --condition '{condition}' --video_path '{video_path}' --output_path '{output_path}' --width 512 --height 512 --fps 8 --video_length {video_length}"
|
| 137 |
subprocess.run(command, shell=True)
|
| 138 |
|
| 139 |
# Construct the video path
|
| 140 |
video_path_output = os.path.join(output_path, f"{prompt}.mp4")
|
| 141 |
|
|
|
|
|
|
|
| 142 |
return "done", video_path_output
|
| 143 |
|
| 144 |
+
|
| 145 |
+
|
| 146 |
css="""
|
| 147 |
#col-container {max-width: 810px; margin-left: auto; margin-right: auto;}
|
| 148 |
"""
|
|
|
|
| 153 |
""")
|
| 154 |
with gr.Row():
|
| 155 |
with gr.Column():
|
| 156 |
+
#video_in = gr.Video(source="upload", type="filepath", visible=True)
|
| 157 |
+
video_path = gr.Video(source="upload", type="filepath", visible=True)
|
| 158 |
prompt = gr.Textbox(label="prompt")
|
| 159 |
with gr.Row():
|
| 160 |
condition = gr.Dropdown(label="Condition", choices=["depth", "canny", "pose"], value="depth")
|
|
|
|
| 164 |
with gr.Column():
|
| 165 |
video_res = gr.Video(label="result")
|
| 166 |
status = gr.Textbox(label="result")
|
| 167 |
+
video_path.change(fn=get_frame_count,
|
| 168 |
+
inputs=[video_path],
|
| 169 |
+
outputs=[video_length]
|
| 170 |
)
|
| 171 |
submit_btn.click(fn=run_inference,
|
| 172 |
inputs=[prompt,
|