Spaces:
Paused
Paused
| import gradio as gr | |
| import os | |
| import subprocess | |
| import cv2 | |
| from moviepy.editor import VideoFileClip, concatenate_videoclips | |
| import math | |
| from huggingface_hub import snapshot_download | |
| model_ids = [ | |
| 'runwayml/stable-diffusion-v1-5', | |
| 'lllyasviel/sd-controlnet-depth', | |
| 'lllyasviel/sd-controlnet-canny', | |
| 'lllyasviel/sd-controlnet-openpose', | |
| ] | |
| for model_id in model_ids: | |
| model_name = model_id.split('/')[-1] | |
| snapshot_download(model_id, local_dir=f'checkpoints/{model_name}') | |
| def get_frame_count_in_duration(filepath): | |
| video = cv2.VideoCapture(filepath) | |
| fps = video.get(cv2.CAP_PROP_FPS) | |
| frame_count = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) | |
| duration = frame_count / fps | |
| width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
| height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
| video.release() | |
| return gr.update(maximum=frame_count) | |
| def get_video_dimension(filepath): | |
| video = cv2.VideoCapture(filepath) | |
| width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
| height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
| fps = int(video.get(cv2.CAP_PROP_FPS)) | |
| video.release() | |
| return width, height, fps | |
| def resize_video(input_path, output_path, width): | |
| # Load the video clip | |
| video = VideoFileClip(input_path) | |
| # Calculate the new height while maintaining the aspect ratio | |
| height = int(video.size[1] * (width / video.size[0])) | |
| # Resize the video | |
| resized_video = video.resize(width=width, height=height) | |
| # Write the resized video to the output path | |
| resized_video.write_videofile(output_path, codec='libx264') | |
| return output_path | |
| def run_inference(prompt, video_path, condition, video_length): | |
| # Specify the input and output paths | |
| input_vid = video_path | |
| resized_vid = 'resized.mp4' | |
| # Call the function to resize the video | |
| video_path = resize_video(input_vid, resized_vid, width=512) | |
| width, height, fps = get_video_dimension(video_path) | |
| print(f"{width} x {height} | {fps}") | |
| output_path = 'output/' | |
| os.makedirs(output_path, exist_ok=True) | |
| # Construct the final video path | |
| video_path_output = os.path.join(output_path, f"{prompt}.mp4") | |
| # Check if the file already exists | |
| if os.path.exists(video_path_output): | |
| # Delete the existing file | |
| os.remove(video_path_output) | |
| if video_length > 12: | |
| command = f"python inference.py --prompt '{prompt}' --condition '{condition}' --video_path '{video_path}' --output_path '{output_path}' --width {width} --height {height} --fps {fps} --video_length {video_length} --is_long_video" | |
| else: | |
| command = f"python inference.py --prompt '{prompt}' --condition '{condition}' --video_path '{video_path}' --output_path '{output_path}' --width {width} --height {height} --fps {fps} --video_length {video_length}" | |
| subprocess.run(command, shell=True) | |
| # Construct the video path | |
| video_path_output = os.path.join(output_path, f"{prompt}.mp4") | |
| return "done", video_path_output | |
| css=""" | |
| #col-container {max-width: 510px; margin-left: auto; margin-right: auto;} | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(elem-id="col-container"): | |
| gr.Markdown(""" | |
| <h1 style="text-align: center;">ControlVideo</h1> | |
| """) | |
| prompt = gr.Textbox(label="prompt") | |
| video_path = gr.Video(source="upload", type="filepath") | |
| condition = gr.Dropdown(label="Condition", choices=["depth", "canny", "pose"], value="depth") | |
| video_length = gr.Slider(label="Video length", info="How many frames do you want to process ?", minimum=1, maximum=12, step=1, value=2) | |
| #seed = gr.Number(label="seed", value=42) | |
| submit_btn = gr.Button("Submit") | |
| video_res = gr.Video(label="result") | |
| status = gr.Textbox(label="result") | |
| video_path.change(fn=get_frame_count_in_duration, | |
| inputs=[video_path], | |
| outputs=[video_length] | |
| ) | |
| submit_btn.click(fn=run_inference, | |
| inputs=[prompt, | |
| video_path, | |
| condition, | |
| video_length | |
| ], | |
| outputs=[status, video_res]) | |
| demo.queue(max_size=12).launch() |