Spaces:
Runtime error
Runtime error
| # Copyright 2025 HuggingFace Inc. and the LlamaFactory team. | |
| # | |
| # This code is inspired by the HuggingFace's transformers library. | |
| # https://github.com/huggingface/transformers/blob/v4.40.0/examples/pytorch/language-modeling/run_clm.py | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from dataclasses import asdict, dataclass, field | |
| from typing import Any, Literal, Optional | |
| class DataArguments: | |
| r"""Arguments pertaining to what data we are going to input our model for training and evaluation.""" | |
| template: Optional[str] = field( | |
| default=None, | |
| metadata={"help": "Which template to use for constructing prompts in training and inference."}, | |
| ) | |
| dataset: Optional[str] = field( | |
| default=None, | |
| metadata={"help": "The name of dataset(s) to use for training. Use commas to separate multiple datasets."}, | |
| ) | |
| eval_dataset: Optional[str] = field( | |
| default=None, | |
| metadata={"help": "The name of dataset(s) to use for evaluation. Use commas to separate multiple datasets."}, | |
| ) | |
| dataset_dir: str = field( | |
| default="data", | |
| metadata={"help": "Path to the folder containing the datasets."}, | |
| ) | |
| media_dir: Optional[str] = field( | |
| default=None, | |
| metadata={"help": "Path to the folder containing the images, videos or audios. Defaults to `dataset_dir`."}, | |
| ) | |
| cutoff_len: int = field( | |
| default=2048, | |
| metadata={"help": "The cutoff length of the tokenized inputs in the dataset."}, | |
| ) | |
| train_on_prompt: bool = field( | |
| default=False, | |
| metadata={"help": "Whether or not to disable the mask on the prompt."}, | |
| ) | |
| mask_history: bool = field( | |
| default=False, | |
| metadata={"help": "Whether or not to mask the history and train on the last turn only."}, | |
| ) | |
| streaming: bool = field( | |
| default=False, | |
| metadata={"help": "Enable dataset streaming."}, | |
| ) | |
| buffer_size: int = field( | |
| default=16384, | |
| metadata={"help": "Size of the buffer to randomly sample examples from in dataset streaming."}, | |
| ) | |
| mix_strategy: Literal["concat", "interleave_under", "interleave_over"] = field( | |
| default="concat", | |
| metadata={"help": "Strategy to use in dataset mixing (concat/interleave) (undersampling/oversampling)."}, | |
| ) | |
| interleave_probs: Optional[str] = field( | |
| default=None, | |
| metadata={"help": "Probabilities to sample data from datasets. Use commas to separate multiple datasets."}, | |
| ) | |
| overwrite_cache: bool = field( | |
| default=False, | |
| metadata={"help": "Overwrite the cached training and evaluation sets."}, | |
| ) | |
| preprocessing_batch_size: int = field( | |
| default=1000, | |
| metadata={"help": "The number of examples in one group in pre-processing."}, | |
| ) | |
| preprocessing_num_workers: Optional[int] = field( | |
| default=None, | |
| metadata={"help": "The number of processes to use for the pre-processing."}, | |
| ) | |
| max_samples: Optional[int] = field( | |
| default=None, | |
| metadata={"help": "For debugging purposes, truncate the number of examples for each dataset."}, | |
| ) | |
| eval_num_beams: Optional[int] = field( | |
| default=None, | |
| metadata={"help": "Number of beams to use for evaluation. This argument will be passed to `model.generate`"}, | |
| ) | |
| ignore_pad_token_for_loss: bool = field( | |
| default=True, | |
| metadata={"help": "Whether or not to ignore the tokens corresponding to the pad label in loss computation."}, | |
| ) | |
| val_size: float = field( | |
| default=0.0, | |
| metadata={"help": "Size of the validation set, should be an integer or a float in range `[0,1)`."}, | |
| ) | |
| eval_on_each_dataset: bool = field( | |
| default=False, | |
| metadata={"help": "Whether or not to evaluate on each dataset separately."}, | |
| ) | |
| packing: Optional[bool] = field( | |
| default=None, | |
| metadata={"help": "Enable sequences packing in training. Will automatically enable in pre-training."}, | |
| ) | |
| neat_packing: bool = field( | |
| default=False, | |
| metadata={"help": "Enable sequence packing without cross-attention."}, | |
| ) | |
| tool_format: Optional[str] = field( | |
| default=None, | |
| metadata={"help": "Tool format to use for constructing function calling examples."}, | |
| ) | |
| tokenized_path: Optional[str] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "Path to save or load the tokenized datasets. " | |
| "If tokenized_path not exists, it will save the tokenized datasets. " | |
| "If tokenized_path exists, it will load the tokenized datasets." | |
| ) | |
| }, | |
| ) | |
| def __post_init__(self): | |
| def split_arg(arg): | |
| if isinstance(arg, str): | |
| return [item.strip() for item in arg.split(",")] | |
| return arg | |
| self.dataset = split_arg(self.dataset) | |
| self.eval_dataset = split_arg(self.eval_dataset) | |
| if self.media_dir is None: | |
| self.media_dir = self.dataset_dir | |
| if self.dataset is None and self.val_size > 1e-6: | |
| raise ValueError("Cannot specify `val_size` if `dataset` is None.") | |
| if self.eval_dataset is not None and self.val_size > 1e-6: | |
| raise ValueError("Cannot specify `val_size` if `eval_dataset` is not None.") | |
| if self.interleave_probs is not None: | |
| if self.mix_strategy == "concat": | |
| raise ValueError("`interleave_probs` is only valid for interleaved mixing.") | |
| self.interleave_probs = list(map(float, split_arg(self.interleave_probs))) | |
| if self.dataset is not None and len(self.dataset) != len(self.interleave_probs): | |
| raise ValueError("The length of dataset and interleave probs should be identical.") | |
| if self.eval_dataset is not None and len(self.eval_dataset) != len(self.interleave_probs): | |
| raise ValueError("The length of eval dataset and interleave probs should be identical.") | |
| if self.streaming and self.val_size > 1e-6 and self.val_size < 1: | |
| raise ValueError("Streaming mode should have an integer val size.") | |
| if self.streaming and self.max_samples is not None: | |
| raise ValueError("`max_samples` is incompatible with `streaming`.") | |
| if self.mask_history and self.train_on_prompt: | |
| raise ValueError("`mask_history` is incompatible with `train_on_prompt`.") | |
| if self.neat_packing: | |
| self.packing = True | |
| if self.packing: | |
| self.cutoff_len -= 1 # avoid pad_to_multiple_of, needs improve | |
| def to_dict(self) -> dict[str, Any]: | |
| return asdict(self) | |