Spaces:
Runtime error
Runtime error
| # Copyright 2025 the LlamaFactory team. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import uuid | |
| from collections.abc import AsyncGenerator, AsyncIterator | |
| from typing import TYPE_CHECKING, Any, Optional, Union | |
| from typing_extensions import override | |
| from ..data import get_template_and_fix_tokenizer | |
| from ..extras import logging | |
| from ..extras.constants import AUDIO_PLACEHOLDER, IMAGE_PLACEHOLDER, VIDEO_PLACEHOLDER, EngineName | |
| from ..extras.misc import get_device_count | |
| from ..extras.packages import is_vllm_available | |
| from ..model import load_config, load_tokenizer | |
| from ..model.model_utils.quantization import QuantizationMethod | |
| from ..model.model_utils.visual import LlavaMultiModalProjectorForYiVLForVLLM | |
| from .base_engine import BaseEngine, Response | |
| if is_vllm_available(): | |
| from vllm import AsyncEngineArgs, AsyncLLMEngine, RequestOutput, SamplingParams | |
| from vllm.lora.request import LoRARequest | |
| if TYPE_CHECKING: | |
| from ..data.mm_plugin import AudioInput, ImageInput, VideoInput | |
| from ..hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments | |
| logger = logging.get_logger(__name__) | |
| class VllmEngine(BaseEngine): | |
| def __init__( | |
| self, | |
| model_args: "ModelArguments", | |
| data_args: "DataArguments", | |
| finetuning_args: "FinetuningArguments", | |
| generating_args: "GeneratingArguments", | |
| ) -> None: | |
| self.name = EngineName.VLLM | |
| self.model_args = model_args | |
| config = load_config(model_args) # may download model from ms hub | |
| if getattr(config, "quantization_config", None): # gptq models should use float16 | |
| quantization_config: dict[str, Any] = getattr(config, "quantization_config", None) | |
| quant_method = quantization_config.get("quant_method", "") | |
| if quant_method == QuantizationMethod.GPTQ and model_args.infer_dtype == "auto": | |
| model_args.infer_dtype = "float16" | |
| self.can_generate = finetuning_args.stage == "sft" | |
| tokenizer_module = load_tokenizer(model_args) | |
| self.tokenizer = tokenizer_module["tokenizer"] | |
| self.processor = tokenizer_module["processor"] | |
| self.tokenizer.padding_side = "left" | |
| self.template = get_template_and_fix_tokenizer(self.tokenizer, data_args) | |
| self.template.mm_plugin.expand_mm_tokens = False # for vllm generate | |
| self.generating_args = generating_args.to_dict() | |
| engine_args = { | |
| "model": model_args.model_name_or_path, | |
| "trust_remote_code": model_args.trust_remote_code, | |
| "download_dir": model_args.cache_dir, | |
| "dtype": model_args.infer_dtype, | |
| "max_model_len": model_args.vllm_maxlen, | |
| "tensor_parallel_size": get_device_count() or 1, | |
| "gpu_memory_utilization": model_args.vllm_gpu_util, | |
| "disable_log_stats": True, | |
| "disable_log_requests": True, | |
| "enforce_eager": model_args.vllm_enforce_eager, | |
| "enable_lora": model_args.adapter_name_or_path is not None, | |
| "max_lora_rank": model_args.vllm_max_lora_rank, | |
| } | |
| if self.template.mm_plugin.__class__.__name__ != "BasePlugin": | |
| engine_args["limit_mm_per_prompt"] = {"image": 4, "video": 2, "audio": 2} | |
| if isinstance(model_args.vllm_config, dict): | |
| engine_args.update(model_args.vllm_config) | |
| if getattr(config, "is_yi_vl_derived_model", None): | |
| import vllm.model_executor.models.llava | |
| logger.info_rank0("Detected Yi-VL model, applying projector patch.") | |
| vllm.model_executor.models.llava.LlavaMultiModalProjector = LlavaMultiModalProjectorForYiVLForVLLM | |
| self.model = AsyncLLMEngine.from_engine_args(AsyncEngineArgs(**engine_args)) | |
| if model_args.adapter_name_or_path is not None: | |
| self.lora_request = LoRARequest("default", 1, model_args.adapter_name_or_path[0]) | |
| else: | |
| self.lora_request = None | |
| async def _generate( | |
| self, | |
| messages: list[dict[str, str]], | |
| system: Optional[str] = None, | |
| tools: Optional[str] = None, | |
| images: Optional[list["ImageInput"]] = None, | |
| videos: Optional[list["VideoInput"]] = None, | |
| audios: Optional[list["AudioInput"]] = None, | |
| **input_kwargs, | |
| ) -> AsyncIterator["RequestOutput"]: | |
| request_id = f"chatcmpl-{uuid.uuid4().hex}" | |
| if images is not None and not any(IMAGE_PLACEHOLDER in message["content"] for message in messages): | |
| messages[0]["content"] = IMAGE_PLACEHOLDER * len(images) + messages[0]["content"] | |
| if videos is not None and not any(VIDEO_PLACEHOLDER in message["content"] for message in messages): | |
| messages[0]["content"] = VIDEO_PLACEHOLDER * len(videos) + messages[0]["content"] | |
| if audios is not None and not any(AUDIO_PLACEHOLDER in message["content"] for message in messages): | |
| messages[0]["content"] = AUDIO_PLACEHOLDER * len(audios) + messages[0]["content"] | |
| messages = self.template.mm_plugin.process_messages( | |
| messages, images or [], videos or [], audios or [], self.processor | |
| ) | |
| paired_messages = messages + [{"role": "assistant", "content": ""}] | |
| system = system or self.generating_args["default_system"] | |
| enable_thinking = input_kwargs.pop("enable_thinking", None) | |
| enable_thinking = enable_thinking if enable_thinking is not None else self.generating_args["enable_thinking"] | |
| prompt_ids, _ = self.template.encode_oneturn(self.tokenizer, paired_messages, system, tools, enable_thinking) | |
| prompt_length = len(prompt_ids) | |
| temperature: Optional[float] = input_kwargs.pop("temperature", None) | |
| top_p: Optional[float] = input_kwargs.pop("top_p", None) | |
| top_k: Optional[float] = input_kwargs.pop("top_k", None) | |
| num_return_sequences: int = input_kwargs.pop("num_return_sequences", 1) | |
| repetition_penalty: Optional[float] = input_kwargs.pop("repetition_penalty", None) | |
| length_penalty: Optional[float] = input_kwargs.pop("length_penalty", None) | |
| skip_special_tokens: Optional[bool] = input_kwargs.pop("skip_special_tokens", None) | |
| max_length: Optional[int] = input_kwargs.pop("max_length", None) | |
| max_new_tokens: Optional[int] = input_kwargs.pop("max_new_tokens", None) | |
| stop: Optional[Union[str, list[str]]] = input_kwargs.pop("stop", None) | |
| if length_penalty is not None: | |
| logger.warning_rank0("Length penalty is not supported by the vllm engine yet.") | |
| if "max_new_tokens" in self.generating_args: | |
| max_tokens = self.generating_args["max_new_tokens"] | |
| elif "max_length" in self.generating_args: | |
| if self.generating_args["max_length"] > prompt_length: | |
| max_tokens = self.generating_args["max_length"] - prompt_length | |
| else: | |
| max_tokens = 1 | |
| if max_length: | |
| max_tokens = max_length - prompt_length if max_length > prompt_length else 1 | |
| if max_new_tokens: | |
| max_tokens = max_new_tokens | |
| sampling_params = SamplingParams( | |
| n=num_return_sequences, | |
| repetition_penalty=( | |
| repetition_penalty if repetition_penalty is not None else self.generating_args["repetition_penalty"] | |
| ) | |
| or 1.0, # repetition_penalty must > 0 | |
| temperature=temperature if temperature is not None else self.generating_args["temperature"], | |
| top_p=(top_p if top_p is not None else self.generating_args["top_p"]) or 1.0, # top_p must > 0 | |
| top_k=(top_k if top_k is not None else self.generating_args["top_k"]) or -1, # top_k must > 0 | |
| stop=stop, | |
| stop_token_ids=self.template.get_stop_token_ids(self.tokenizer), | |
| max_tokens=max_tokens, | |
| skip_special_tokens=skip_special_tokens | |
| if skip_special_tokens is not None | |
| else self.generating_args["skip_special_tokens"], | |
| ) | |
| if images is not None: # add image features | |
| multi_modal_data = { | |
| "image": self.template.mm_plugin._regularize_images( | |
| images, | |
| image_max_pixels=self.model_args.image_max_pixels, | |
| image_min_pixels=self.model_args.image_min_pixels, | |
| )["images"] | |
| } | |
| elif videos is not None: | |
| multi_modal_data = { | |
| "video": self.template.mm_plugin._regularize_videos( | |
| videos, | |
| image_max_pixels=self.model_args.video_max_pixels, | |
| image_min_pixels=self.model_args.video_min_pixels, | |
| video_fps=self.model_args.video_fps, | |
| video_maxlen=self.model_args.video_maxlen, | |
| )["videos"] | |
| } | |
| elif audios is not None: | |
| audio_data = self.template.mm_plugin._regularize_audios( | |
| audios, | |
| sampling_rate=self.model_args.audio_sampling_rate, | |
| ) | |
| multi_modal_data = {"audio": zip(audio_data["audios"], audio_data["sampling_rates"])} | |
| else: | |
| multi_modal_data = None | |
| result_generator = self.model.generate( | |
| {"prompt_token_ids": prompt_ids, "multi_modal_data": multi_modal_data}, | |
| sampling_params=sampling_params, | |
| request_id=request_id, | |
| lora_request=self.lora_request, | |
| ) | |
| return result_generator | |
| async def chat( | |
| self, | |
| messages: list[dict[str, str]], | |
| system: Optional[str] = None, | |
| tools: Optional[str] = None, | |
| images: Optional[list["ImageInput"]] = None, | |
| videos: Optional[list["VideoInput"]] = None, | |
| audios: Optional[list["AudioInput"]] = None, | |
| **input_kwargs, | |
| ) -> list["Response"]: | |
| final_output = None | |
| generator = await self._generate(messages, system, tools, images, videos, audios, **input_kwargs) | |
| async for request_output in generator: | |
| final_output = request_output | |
| results = [] | |
| for output in final_output.outputs: | |
| results.append( | |
| Response( | |
| response_text=output.text, | |
| response_length=len(output.token_ids), | |
| prompt_length=len(final_output.prompt_token_ids), | |
| finish_reason=output.finish_reason, | |
| ) | |
| ) | |
| return results | |
| async def stream_chat( | |
| self, | |
| messages: list[dict[str, str]], | |
| system: Optional[str] = None, | |
| tools: Optional[str] = None, | |
| images: Optional[list["ImageInput"]] = None, | |
| videos: Optional[list["VideoInput"]] = None, | |
| audios: Optional[list["AudioInput"]] = None, | |
| **input_kwargs, | |
| ) -> AsyncGenerator[str, None]: | |
| generated_text = "" | |
| generator = await self._generate(messages, system, tools, images, videos, audios, **input_kwargs) | |
| async for result in generator: | |
| delta_text = result.outputs[0].text[len(generated_text) :] | |
| generated_text = result.outputs[0].text | |
| yield delta_text | |
| async def get_scores( | |
| self, | |
| batch_input: list[str], | |
| **input_kwargs, | |
| ) -> list[float]: | |
| raise NotImplementedError("vLLM engine does not support `get_scores`.") | |