Spaces:
Runtime error
Runtime error
| # Copyright 2025 the LlamaFactory team. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import asyncio | |
| import atexit | |
| import json | |
| from collections.abc import AsyncGenerator, AsyncIterator, Sequence | |
| from typing import TYPE_CHECKING, Any, Optional, Union | |
| import requests | |
| from typing_extensions import override | |
| from ..data import get_template_and_fix_tokenizer | |
| from ..extras import logging | |
| from ..extras.constants import AUDIO_PLACEHOLDER, IMAGE_PLACEHOLDER, VIDEO_PLACEHOLDER, EngineName | |
| from ..extras.misc import get_device_count, torch_gc | |
| from ..extras.packages import is_sglang_available | |
| from ..hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments | |
| from ..model import load_config, load_tokenizer | |
| from ..model.model_utils.quantization import QuantizationMethod | |
| from .base_engine import BaseEngine, Response | |
| if is_sglang_available(): | |
| from sglang.utils import launch_server_cmd, terminate_process, wait_for_server # type: ignore | |
| if TYPE_CHECKING: | |
| from ..data.mm_plugin import AudioInput, ImageInput, VideoInput | |
| logger = logging.get_logger(__name__) | |
| class SGLangEngine(BaseEngine): | |
| """Inference engine for SGLang models. | |
| This class wraps the SGLang engine to provide a consistent interface for text generation | |
| that matches LLaMA Factory's requirements. It uses the SGLang HTTP server approach for | |
| better interaction and performance. The engine launches a server process and communicates | |
| with it via HTTP requests. | |
| For more details on the SGLang HTTP server approach, see: | |
| https://docs.sglang.ai/backend/send_request.html | |
| """ | |
| def __init__( | |
| self, | |
| model_args: "ModelArguments", | |
| data_args: "DataArguments", | |
| finetuning_args: "FinetuningArguments", | |
| generating_args: "GeneratingArguments", | |
| ) -> None: | |
| self.name = EngineName.SGLANG | |
| self.model_args = model_args | |
| config = load_config(model_args) # may download model from ms hub | |
| if getattr(config, "quantization_config", None): # gptq models should use float16 | |
| quantization_config: dict[str, Any] = getattr(config, "quantization_config", None) | |
| quant_method = quantization_config.get("quant_method", "") | |
| if quant_method == QuantizationMethod.GPTQ and model_args.infer_dtype == "auto": | |
| model_args.infer_dtype = "float16" | |
| self.can_generate = finetuning_args.stage == "sft" | |
| tokenizer_module = load_tokenizer(model_args) | |
| self.tokenizer = tokenizer_module["tokenizer"] | |
| self.processor = tokenizer_module["processor"] | |
| self.tokenizer.padding_side = "left" | |
| self.template = get_template_and_fix_tokenizer(self.tokenizer, data_args) | |
| self.template.mm_plugin.expand_mm_tokens = False # for sglang generate | |
| self.generating_args = generating_args.to_dict() | |
| launch_cmd = [ | |
| "python3 -m sglang.launch_server", | |
| f"--model-path {model_args.model_name_or_path}", | |
| f"--dtype {model_args.infer_dtype}", | |
| f"--context-length {model_args.sglang_maxlen}", | |
| f"--mem-fraction-static {model_args.sglang_mem_fraction}", | |
| f"--tp-size {model_args.sglang_tp_size if model_args.sglang_tp_size != -1 else get_device_count() or 1}", | |
| f"--download-dir {model_args.cache_dir}", | |
| "--log-level error", | |
| ] | |
| launch_cmd = " ".join(launch_cmd) | |
| logger.info_rank0(f"Starting SGLang server with command: {launch_cmd}") | |
| try: | |
| torch_gc() | |
| self.server_process, port = launch_server_cmd(launch_cmd) | |
| self.base_url = f"http://localhost:{port}" | |
| atexit.register(self._cleanup_server) | |
| logger.info_rank0(f"Waiting for SGLang server to be ready at {self.base_url}") | |
| wait_for_server(self.base_url, timeout=300) | |
| logger.info_rank0(f"SGLang server initialized successfully at {self.base_url}") | |
| try: | |
| response = requests.get(f"{self.base_url}/get_model_info", timeout=5) | |
| if response.status_code == 200: | |
| model_info = response.json() | |
| logger.info(f"SGLang server model info: {model_info}") | |
| except Exception as e: | |
| logger.debug(f"Note: could not get model info: {str(e)}") | |
| except Exception as e: | |
| logger.error(f"Failed to start SGLang server: {str(e)}") | |
| self._cleanup_server() # make sure to clean up any started process | |
| raise RuntimeError(f"SGLang server initialization failed: {str(e)}.") | |
| def _cleanup_server(self): | |
| r"""Clean up the server process when the engine is destroyed.""" | |
| if hasattr(self, "server_process") and self.server_process: | |
| try: | |
| logger.info("Terminating SGLang server process") | |
| terminate_process(self.server_process) | |
| logger.info("SGLang server process terminated") | |
| except Exception as e: | |
| logger.warning(f"Error terminating SGLang server: {str(e)}") | |
| async def _generate( | |
| self, | |
| messages: list[dict[str, str]], | |
| system: Optional[str] = None, | |
| tools: Optional[str] = None, | |
| images: Optional[list["ImageInput"]] = None, | |
| videos: Optional[list["VideoInput"]] = None, | |
| audios: Optional[list["AudioInput"]] = None, | |
| **input_kwargs, | |
| ) -> AsyncIterator[dict[str, Any]]: | |
| if images is not None and not any(IMAGE_PLACEHOLDER in message["content"] for message in messages): | |
| messages[0]["content"] = IMAGE_PLACEHOLDER * len(images) + messages[0]["content"] | |
| if videos is not None and not any(VIDEO_PLACEHOLDER in message["content"] for message in messages): | |
| messages[0]["content"] = VIDEO_PLACEHOLDER * len(videos) + messages[0]["content"] | |
| if audios is not None and not any(AUDIO_PLACEHOLDER in message["content"] for message in messages): | |
| messages[0]["content"] = AUDIO_PLACEHOLDER * len(audios) + messages[0]["content"] | |
| messages = self.template.mm_plugin.process_messages( | |
| messages, images or [], videos or [], audios or [], self.processor | |
| ) | |
| paired_messages = messages + [{"role": "assistant", "content": ""}] | |
| system = system or self.generating_args["default_system"] | |
| enable_thinking = input_kwargs.pop("enable_thinking", None) | |
| enable_thinking = enable_thinking if enable_thinking is not None else self.generating_args["enable_thinking"] | |
| prompt_ids, _ = self.template.encode_oneturn(self.tokenizer, paired_messages, system, tools, enable_thinking) | |
| prompt_length = len(prompt_ids) | |
| temperature: Optional[float] = input_kwargs.pop("temperature", None) | |
| top_p: Optional[float] = input_kwargs.pop("top_p", None) | |
| top_k: Optional[float] = input_kwargs.pop("top_k", None) | |
| num_return_sequences: int = input_kwargs.pop("num_return_sequences", 1) | |
| repetition_penalty: Optional[float] = input_kwargs.pop("repetition_penalty", None) | |
| skip_special_tokens: Optional[bool] = input_kwargs.pop("skip_special_tokens", None) | |
| max_length: Optional[int] = input_kwargs.pop("max_length", None) | |
| max_new_tokens: Optional[int] = input_kwargs.pop("max_new_tokens", None) | |
| stop: Optional[Union[str, list[str]]] = input_kwargs.pop("stop", None) | |
| if num_return_sequences != 1: | |
| raise NotImplementedError("SGLang only supports n=1.") | |
| if "max_new_tokens" in self.generating_args: | |
| max_tokens = self.generating_args["max_new_tokens"] | |
| elif "max_length" in self.generating_args: | |
| if self.generating_args["max_length"] > prompt_length: | |
| max_tokens = self.generating_args["max_length"] - prompt_length | |
| else: | |
| max_tokens = 1 | |
| if max_length: | |
| max_tokens = max_length - prompt_length if max_length > prompt_length else 1 | |
| if max_new_tokens: | |
| max_tokens = max_new_tokens | |
| sampling_params = { | |
| "temperature": temperature if temperature is not None else self.generating_args["temperature"], | |
| "top_p": (top_p if top_p is not None else self.generating_args["top_p"]) or 1.0, # top_p must > 0 | |
| "top_k": (top_k if top_k is not None else self.generating_args["top_k"]) or -1, # top_k must > 0 | |
| "stop": stop, | |
| "stop_token_ids": self.template.get_stop_token_ids(self.tokenizer), | |
| "max_new_tokens": max_tokens, | |
| "repetition_penalty": ( | |
| repetition_penalty if repetition_penalty is not None else self.generating_args["repetition_penalty"] | |
| ) | |
| or 1.0, # repetition_penalty must > 0 | |
| "skip_special_tokens": skip_special_tokens | |
| if skip_special_tokens is not None | |
| else self.generating_args["skip_special_tokens"], | |
| } | |
| def stream_request(): | |
| json_data = { | |
| "input_ids": prompt_ids, | |
| "sampling_params": sampling_params, | |
| "stream": True, | |
| } | |
| response = requests.post(f"{self.base_url}/generate", json=json_data, stream=True) | |
| if response.status_code != 200: | |
| raise RuntimeError(f"SGLang server error: {response.status_code}, {response.text}") | |
| for chunk in response.iter_lines(decode_unicode=False): | |
| chunk = str(chunk.decode("utf-8")) | |
| if chunk == "data: [DONE]": | |
| break | |
| if chunk and chunk.startswith("data:"): | |
| yield json.loads(chunk[5:].strip("\n")) | |
| return await asyncio.to_thread(stream_request) | |
| async def chat( | |
| self, | |
| messages: Sequence[dict[str, str]], | |
| system: Optional[str] = None, | |
| tools: Optional[str] = None, | |
| images: Optional[Sequence["ImageInput"]] = None, | |
| videos: Optional[Sequence["VideoInput"]] = None, | |
| audios: Optional[Sequence["AudioInput"]] = None, | |
| **input_kwargs, | |
| ) -> list["Response"]: | |
| final_output = None | |
| generator = await self._generate(messages, system, tools, images, videos, audios, **input_kwargs) | |
| for request_output in generator: | |
| final_output = request_output | |
| results = [ | |
| Response( | |
| response_text=final_output["text"], | |
| response_length=final_output["meta_info"]["completion_tokens"], | |
| prompt_length=final_output["meta_info"]["prompt_tokens"], | |
| finish_reason="stop" if final_output["meta_info"]["finish_reason"] == "stop" else "length", | |
| ) | |
| ] | |
| return results | |
| async def stream_chat( | |
| self, | |
| messages: list[dict[str, str]], | |
| system: Optional[str] = None, | |
| tools: Optional[str] = None, | |
| images: Optional[list["ImageInput"]] = None, | |
| videos: Optional[list["VideoInput"]] = None, | |
| audios: Optional[list["AudioInput"]] = None, | |
| **input_kwargs, | |
| ) -> AsyncGenerator[str, None]: | |
| generated_text = "" | |
| generator = await self._generate(messages, system, tools, images, videos, audios, **input_kwargs) | |
| for result in generator: | |
| delta_text = result["text"][len(generated_text) :] | |
| generated_text = result["text"] | |
| yield delta_text | |
| async def get_scores( | |
| self, | |
| batch_input: list[str], | |
| **input_kwargs, | |
| ) -> list[float]: | |
| raise NotImplementedError("SGLang engine does not support `get_scores`.") | |
| def __del__(self): | |
| r"""Ensure server is cleaned up when object is deleted.""" | |
| self._cleanup_server() | |
| try: | |
| atexit.unregister(self._cleanup_server) | |
| except Exception: | |
| pass | |