Spaces:
Runtime error
Runtime error
| # Copyright 2025 the LlamaFactory team. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import asyncio | |
| import os | |
| from collections.abc import AsyncGenerator | |
| from threading import Thread | |
| from typing import TYPE_CHECKING, Any, Callable, Optional, Union | |
| import torch | |
| from transformers import GenerationConfig, TextIteratorStreamer | |
| from typing_extensions import override | |
| from ..data import get_template_and_fix_tokenizer | |
| from ..extras import logging | |
| from ..extras.constants import AUDIO_PLACEHOLDER, IMAGE_PLACEHOLDER, VIDEO_PLACEHOLDER, EngineName | |
| from ..model import load_model, load_tokenizer | |
| from .base_engine import BaseEngine, Response | |
| if TYPE_CHECKING: | |
| from transformers import PreTrainedModel, PreTrainedTokenizer, ProcessorMixin | |
| from trl import PreTrainedModelWrapper | |
| from ..data import Template | |
| from ..data.mm_plugin import AudioInput, ImageInput, VideoInput | |
| from ..hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments | |
| logger = logging.get_logger(__name__) | |
| class HuggingfaceEngine(BaseEngine): | |
| def __init__( | |
| self, | |
| model_args: "ModelArguments", | |
| data_args: "DataArguments", | |
| finetuning_args: "FinetuningArguments", | |
| generating_args: "GeneratingArguments", | |
| ) -> None: | |
| self.name = EngineName.HF | |
| self.can_generate = finetuning_args.stage == "sft" | |
| tokenizer_module = load_tokenizer(model_args) | |
| self.tokenizer = tokenizer_module["tokenizer"] | |
| self.processor = tokenizer_module["processor"] | |
| self.tokenizer.padding_side = "left" if self.can_generate else "right" | |
| self.template = get_template_and_fix_tokenizer(self.tokenizer, data_args) | |
| self.model = load_model( | |
| self.tokenizer, model_args, finetuning_args, is_trainable=False, add_valuehead=(not self.can_generate) | |
| ) # must after fixing tokenizer to resize vocab | |
| self.generating_args = generating_args.to_dict() | |
| try: | |
| asyncio.get_event_loop() | |
| except RuntimeError: | |
| logger.warning_rank0_once("There is no current event loop, creating a new one.") | |
| loop = asyncio.new_event_loop() | |
| asyncio.set_event_loop(loop) | |
| self.semaphore = asyncio.Semaphore(int(os.getenv("MAX_CONCURRENT", "1"))) | |
| def _process_args( | |
| model: "PreTrainedModel", | |
| tokenizer: "PreTrainedTokenizer", | |
| processor: Optional["ProcessorMixin"], | |
| template: "Template", | |
| generating_args: dict[str, Any], | |
| messages: list[dict[str, str]], | |
| system: Optional[str] = None, | |
| tools: Optional[str] = None, | |
| images: Optional[list["ImageInput"]] = None, | |
| videos: Optional[list["VideoInput"]] = None, | |
| audios: Optional[list["AudioInput"]] = None, | |
| input_kwargs: Optional[dict[str, Any]] = {}, | |
| ) -> tuple[dict[str, Any], int]: | |
| mm_input_dict = {"images": [], "videos": [], "audios": [], "imglens": [0], "vidlens": [0], "audlens": [0]} | |
| if images is not None: | |
| mm_input_dict.update({"images": images, "imglens": [len(images)]}) | |
| if not any(IMAGE_PLACEHOLDER in message["content"] for message in messages): | |
| messages[0]["content"] = IMAGE_PLACEHOLDER * len(images) + messages[0]["content"] | |
| if videos is not None: | |
| mm_input_dict.update({"videos": videos, "vidlens": [len(videos)]}) | |
| if not any(VIDEO_PLACEHOLDER in message["content"] for message in messages): | |
| messages[0]["content"] = VIDEO_PLACEHOLDER * len(videos) + messages[0]["content"] | |
| if audios is not None: | |
| mm_input_dict.update({"audios": audios, "audlens": [len(audios)]}) | |
| if not any(AUDIO_PLACEHOLDER in message["content"] for message in messages): | |
| messages[0]["content"] = AUDIO_PLACEHOLDER * len(audios) + messages[0]["content"] | |
| messages = template.mm_plugin.process_messages( | |
| messages, mm_input_dict["images"], mm_input_dict["videos"], mm_input_dict["audios"], processor | |
| ) | |
| paired_messages = messages + [{"role": "assistant", "content": ""}] | |
| system = system or generating_args["default_system"] | |
| enable_thinking = input_kwargs.pop("enable_thinking", None) | |
| enable_thinking = enable_thinking if enable_thinking is not None else generating_args["enable_thinking"] | |
| prompt_ids, _ = template.encode_oneturn(tokenizer, paired_messages, system, tools, enable_thinking) | |
| prompt_ids, _ = template.mm_plugin.process_token_ids( | |
| prompt_ids, | |
| None, | |
| mm_input_dict["images"], | |
| mm_input_dict["videos"], | |
| mm_input_dict["audios"], | |
| tokenizer, | |
| processor, | |
| ) | |
| prompt_length = len(prompt_ids) | |
| inputs = torch.tensor([prompt_ids], device=model.device) | |
| attention_mask = torch.ones_like(inputs, dtype=torch.long) | |
| do_sample: Optional[bool] = input_kwargs.pop("do_sample", None) | |
| temperature: Optional[float] = input_kwargs.pop("temperature", None) | |
| top_p: Optional[float] = input_kwargs.pop("top_p", None) | |
| top_k: Optional[float] = input_kwargs.pop("top_k", None) | |
| num_return_sequences: int = input_kwargs.pop("num_return_sequences", 1) | |
| repetition_penalty: Optional[float] = input_kwargs.pop("repetition_penalty", None) | |
| length_penalty: Optional[float] = input_kwargs.pop("length_penalty", None) | |
| skip_special_tokens: Optional[bool] = input_kwargs.pop("skip_special_tokens", None) | |
| max_length: Optional[int] = input_kwargs.pop("max_length", None) | |
| max_new_tokens: Optional[int] = input_kwargs.pop("max_new_tokens", None) | |
| stop: Optional[Union[str, list[str]]] = input_kwargs.pop("stop", None) | |
| if stop is not None: | |
| logger.warning_rank0("Stop parameter is not supported by the huggingface engine yet.") | |
| generating_args = generating_args.copy() | |
| generating_args.update( | |
| dict( | |
| do_sample=do_sample if do_sample is not None else generating_args["do_sample"], | |
| temperature=temperature if temperature is not None else generating_args["temperature"], | |
| top_p=top_p if top_p is not None else generating_args["top_p"], | |
| top_k=top_k if top_k is not None else generating_args["top_k"], | |
| num_return_sequences=num_return_sequences, | |
| repetition_penalty=repetition_penalty | |
| if repetition_penalty is not None | |
| else generating_args["repetition_penalty"], | |
| length_penalty=length_penalty if length_penalty is not None else generating_args["length_penalty"], | |
| skip_special_tokens=skip_special_tokens | |
| if skip_special_tokens is not None | |
| else generating_args["skip_special_tokens"], | |
| eos_token_id=template.get_stop_token_ids(tokenizer), | |
| pad_token_id=tokenizer.pad_token_id, | |
| ) | |
| ) | |
| if isinstance(num_return_sequences, int) and num_return_sequences > 1: # do_sample needs temperature > 0 | |
| generating_args["do_sample"] = True | |
| generating_args["temperature"] = generating_args["temperature"] or 1.0 | |
| if not generating_args["temperature"]: | |
| generating_args["do_sample"] = False | |
| if not generating_args["do_sample"]: | |
| generating_args.pop("temperature", None) | |
| generating_args.pop("top_p", None) | |
| if max_length: | |
| generating_args.pop("max_new_tokens", None) | |
| generating_args["max_length"] = max_length | |
| if max_new_tokens: | |
| generating_args.pop("max_length", None) | |
| generating_args["max_new_tokens"] = max_new_tokens | |
| gen_kwargs = dict( | |
| inputs=inputs, | |
| attention_mask=attention_mask, | |
| generation_config=GenerationConfig(**generating_args), | |
| ) | |
| mm_inputs = template.mm_plugin.get_mm_inputs(**mm_input_dict, batch_ids=[prompt_ids], processor=processor) | |
| for key, value in mm_inputs.items(): | |
| if isinstance(value, list) and isinstance(value[0], torch.Tensor): # for pixtral inputs | |
| value = torch.stack(value) # assume they have same sizes | |
| elif ( | |
| isinstance(value, list) and isinstance(value[0], list) and isinstance(value[0][0], torch.Tensor) | |
| ): # for minicpmv inputs | |
| value = torch.stack([torch.stack(v) for v in value]) | |
| elif not isinstance(value, torch.Tensor): | |
| value = torch.tensor(value) | |
| if torch.is_floating_point(value): # cast data dtype for paligemma | |
| value = value.to(model.dtype) | |
| if key == "second_per_grid_ts": # qwen2.5vl special case | |
| gen_kwargs[key] = value.tolist() | |
| else: | |
| gen_kwargs[key] = value.to(model.device) | |
| if getattr(model.config, "model_type", None) in ["minicpmv", "minicpmo"]: | |
| gen_kwargs["input_ids"] = inputs | |
| gen_kwargs["tokenizer"] = tokenizer | |
| if "audio_feature_lens" in mm_inputs: | |
| gen_kwargs["audio_feature_lens"] = mm_inputs["audio_feature_lens"] | |
| gen_kwargs.pop("image_sizes", None) | |
| return gen_kwargs, prompt_length | |
| def _chat( | |
| model: "PreTrainedModel", | |
| tokenizer: "PreTrainedTokenizer", | |
| processor: Optional["ProcessorMixin"], | |
| template: "Template", | |
| generating_args: dict[str, Any], | |
| messages: list[dict[str, str]], | |
| system: Optional[str] = None, | |
| tools: Optional[str] = None, | |
| images: Optional[list["ImageInput"]] = None, | |
| videos: Optional[list["VideoInput"]] = None, | |
| audios: Optional[list["AudioInput"]] = None, | |
| input_kwargs: Optional[dict[str, Any]] = {}, | |
| ) -> list["Response"]: | |
| gen_kwargs, prompt_length = HuggingfaceEngine._process_args( | |
| model, | |
| tokenizer, | |
| processor, | |
| template, | |
| generating_args, | |
| messages, | |
| system, | |
| tools, | |
| images, | |
| videos, | |
| audios, | |
| input_kwargs, | |
| ) | |
| generate_output = model.generate(**gen_kwargs) | |
| if isinstance(generate_output, tuple): | |
| generate_output = generate_output[1][0] # post-process the minicpm_o output | |
| response_ids = generate_output[:, prompt_length:] | |
| response = tokenizer.batch_decode( | |
| response_ids, | |
| skip_special_tokens=getattr(gen_kwargs["generation_config"], "skip_special_tokens", True), | |
| clean_up_tokenization_spaces=True, | |
| ) | |
| results = [] | |
| for i in range(len(response)): | |
| eos_index = (response_ids[i] == tokenizer.eos_token_id).nonzero() | |
| response_length = (eos_index[0].item() + 1) if len(eos_index) else len(response_ids[i]) | |
| results.append( | |
| Response( | |
| response_text=response[i], | |
| response_length=response_length, | |
| prompt_length=prompt_length, | |
| finish_reason="stop" if len(eos_index) else "length", | |
| ) | |
| ) | |
| return results | |
| def _stream_chat( | |
| model: "PreTrainedModel", | |
| tokenizer: "PreTrainedTokenizer", | |
| processor: Optional["ProcessorMixin"], | |
| template: "Template", | |
| generating_args: dict[str, Any], | |
| messages: list[dict[str, str]], | |
| system: Optional[str] = None, | |
| tools: Optional[str] = None, | |
| images: Optional[list["ImageInput"]] = None, | |
| videos: Optional[list["VideoInput"]] = None, | |
| audios: Optional[list["AudioInput"]] = None, | |
| input_kwargs: Optional[dict[str, Any]] = {}, | |
| ) -> Callable[[], str]: | |
| gen_kwargs, _ = HuggingfaceEngine._process_args( | |
| model, | |
| tokenizer, | |
| processor, | |
| template, | |
| generating_args, | |
| messages, | |
| system, | |
| tools, | |
| images, | |
| videos, | |
| audios, | |
| input_kwargs, | |
| ) | |
| streamer = TextIteratorStreamer( | |
| tokenizer, | |
| skip_prompt=True, | |
| skip_special_tokens=getattr(gen_kwargs["generation_config"], "skip_special_tokens", True), | |
| ) | |
| gen_kwargs["streamer"] = streamer | |
| thread = Thread(target=model.generate, kwargs=gen_kwargs, daemon=True) | |
| thread.start() | |
| def stream(): | |
| try: | |
| return streamer.__next__() | |
| except StopIteration: | |
| raise StopAsyncIteration() | |
| return stream | |
| def _get_scores( | |
| model: "PreTrainedModelWrapper", | |
| tokenizer: "PreTrainedTokenizer", | |
| batch_input: list[str], | |
| input_kwargs: Optional[dict[str, Any]] = {}, | |
| ) -> list[float]: | |
| max_length: Optional[int] = input_kwargs.pop("max_length", None) | |
| device = getattr(model.pretrained_model, "device", "cuda") | |
| inputs: dict[str, torch.Tensor] = tokenizer( | |
| batch_input, | |
| padding=True, | |
| truncation=True, | |
| max_length=max_length or getattr(model.config, "max_position_embeddings", 1024), | |
| return_tensors="pt", | |
| add_special_tokens=False, | |
| ).to(device) | |
| values: torch.Tensor = model(**inputs, return_dict=True, use_cache=False)[-1] | |
| scores = values.gather(dim=-1, index=(inputs["attention_mask"].sum(dim=-1, keepdim=True) - 1)) | |
| return scores | |
| async def chat( | |
| self, | |
| messages: list[dict[str, str]], | |
| system: Optional[str] = None, | |
| tools: Optional[str] = None, | |
| images: Optional[list["ImageInput"]] = None, | |
| videos: Optional[list["VideoInput"]] = None, | |
| audios: Optional[list["AudioInput"]] = None, | |
| **input_kwargs, | |
| ) -> list["Response"]: | |
| if not self.can_generate: | |
| raise ValueError("The current model does not support `chat`.") | |
| input_args = ( | |
| self.model, | |
| self.tokenizer, | |
| self.processor, | |
| self.template, | |
| self.generating_args, | |
| messages, | |
| system, | |
| tools, | |
| images, | |
| videos, | |
| audios, | |
| input_kwargs, | |
| ) | |
| async with self.semaphore: | |
| return await asyncio.to_thread(self._chat, *input_args) | |
| async def stream_chat( | |
| self, | |
| messages: list[dict[str, str]], | |
| system: Optional[str] = None, | |
| tools: Optional[str] = None, | |
| images: Optional[list["ImageInput"]] = None, | |
| videos: Optional[list["VideoInput"]] = None, | |
| audios: Optional[list["AudioInput"]] = None, | |
| **input_kwargs, | |
| ) -> AsyncGenerator[str, None]: | |
| if not self.can_generate: | |
| raise ValueError("The current model does not support `stream_chat`.") | |
| input_args = ( | |
| self.model, | |
| self.tokenizer, | |
| self.processor, | |
| self.template, | |
| self.generating_args, | |
| messages, | |
| system, | |
| tools, | |
| images, | |
| videos, | |
| audios, | |
| input_kwargs, | |
| ) | |
| async with self.semaphore: | |
| stream = self._stream_chat(*input_args) | |
| while True: | |
| try: | |
| yield await asyncio.to_thread(stream) | |
| except StopAsyncIteration: | |
| break | |
| async def get_scores( | |
| self, | |
| batch_input: list[str], | |
| **input_kwargs, | |
| ) -> list[float]: | |
| if self.can_generate: | |
| raise ValueError("Cannot get scores using an auto-regressive model.") | |
| input_args = (self.model, self.tokenizer, batch_input, input_kwargs) | |
| async with self.semaphore: | |
| return await asyncio.to_thread(self._get_scores, *input_args) | |