Spaces:
Runtime error
Runtime error
| # Copyright 2025 the LlamaFactory team. | |
| # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import os | |
| import datasets | |
| import pandas as pd | |
| _CITATION = """\ | |
| @article{li2023cmmlu, | |
| title={CMMLU: Measuring massive multitask language understanding in Chinese}, | |
| author={Haonan Li and Yixuan Zhang and Fajri Koto and Yifei Yang and others, | |
| journal={arXiv preprint arXiv:2306.09212}, | |
| year={2023} | |
| } | |
| """ | |
| _DESCRIPTION = """\ | |
| CMMLU is a comprehensive Chinese assessment suite specifically designed to evaluate the advanced knowledge | |
| and reasoning abilities of LLMs within the Chinese language and cultural context. | |
| """ | |
| _HOMEPAGE = "https://github.com/haonan-li/CMMLU" | |
| _LICENSE = "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License" | |
| _URL = "cmmlu.zip" | |
| task_list = [ | |
| "agronomy", | |
| "anatomy", | |
| "ancient_chinese", | |
| "arts", | |
| "astronomy", | |
| "business_ethics", | |
| "chinese_civil_service_exam", | |
| "chinese_driving_rule", | |
| "chinese_food_culture", | |
| "chinese_foreign_policy", | |
| "chinese_history", | |
| "chinese_literature", | |
| "chinese_teacher_qualification", | |
| "clinical_knowledge", | |
| "college_actuarial_science", | |
| "college_education", | |
| "college_engineering_hydrology", | |
| "college_law", | |
| "college_mathematics", | |
| "college_medical_statistics", | |
| "college_medicine", | |
| "computer_science", | |
| "computer_security", | |
| "conceptual_physics", | |
| "construction_project_management", | |
| "economics", | |
| "education", | |
| "electrical_engineering", | |
| "elementary_chinese", | |
| "elementary_commonsense", | |
| "elementary_information_and_technology", | |
| "elementary_mathematics", | |
| "ethnology", | |
| "food_science", | |
| "genetics", | |
| "global_facts", | |
| "high_school_biology", | |
| "high_school_chemistry", | |
| "high_school_geography", | |
| "high_school_mathematics", | |
| "high_school_physics", | |
| "high_school_politics", | |
| "human_sexuality", | |
| "international_law", | |
| "journalism", | |
| "jurisprudence", | |
| "legal_and_moral_basis", | |
| "logical", | |
| "machine_learning", | |
| "management", | |
| "marketing", | |
| "marxist_theory", | |
| "modern_chinese", | |
| "nutrition", | |
| "philosophy", | |
| "professional_accounting", | |
| "professional_law", | |
| "professional_medicine", | |
| "professional_psychology", | |
| "public_relations", | |
| "security_study", | |
| "sociology", | |
| "sports_science", | |
| "traditional_chinese_medicine", | |
| "virology", | |
| "world_history", | |
| "world_religions", | |
| ] | |
| class CMMLUConfig(datasets.BuilderConfig): | |
| def __init__(self, **kwargs): | |
| super().__init__(version=datasets.Version("1.0.1"), **kwargs) | |
| class CMMLU(datasets.GeneratorBasedBuilder): | |
| BUILDER_CONFIGS = [ | |
| CMMLUConfig( | |
| name=task_name, | |
| ) | |
| for task_name in task_list | |
| ] | |
| def _info(self): | |
| features = datasets.Features( | |
| { | |
| "question": datasets.Value("string"), | |
| "A": datasets.Value("string"), | |
| "B": datasets.Value("string"), | |
| "C": datasets.Value("string"), | |
| "D": datasets.Value("string"), | |
| "answer": datasets.Value("string"), | |
| } | |
| ) | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=features, | |
| homepage=_HOMEPAGE, | |
| license=_LICENSE, | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| data_dir = dl_manager.download_and_extract(_URL) | |
| task_name = self.config.name | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TEST, | |
| gen_kwargs={ | |
| "filepath": os.path.join(data_dir, f"test/{task_name}.csv"), | |
| }, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, | |
| gen_kwargs={ | |
| "filepath": os.path.join(data_dir, f"dev/{task_name}.csv"), | |
| }, | |
| ), | |
| ] | |
| def _generate_examples(self, filepath): | |
| df = pd.read_csv(filepath, header=0, index_col=0, encoding="utf-8") | |
| for i, instance in enumerate(df.to_dict(orient="records")): | |
| question = instance.pop("Question", "") | |
| answer = instance.pop("Answer", "") | |
| instance["question"] = question | |
| instance["answer"] = answer | |
| yield i, instance | |