Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -28,26 +28,30 @@ def load_model():
|
|
| 28 |
processor = ColQwen2_5OmniProcessor.from_pretrained("manu/colqwen-omni-v0.1")
|
| 29 |
return model, processor
|
| 30 |
|
| 31 |
-
def chunk_audio(
|
| 32 |
"""Split audio into chunks"""
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
target_rate = 16000
|
| 37 |
-
chunk_length_ms = chunk_length * 1000
|
| 38 |
-
|
| 39 |
-
for i in range(0, len(audio), chunk_length_ms):
|
| 40 |
-
chunk = audio[i:i + chunk_length_ms]
|
| 41 |
-
chunk = chunk.set_channels(1).set_frame_rate(target_rate)
|
| 42 |
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
@spaces.GPU(duration=120)
|
| 53 |
def embed_audio_chunks(audios):
|
|
@@ -108,66 +112,73 @@ def audio_to_base64(data, rate=16000):
|
|
| 108 |
encoded_string = base64.b64encode(buf.read()).decode("utf-8")
|
| 109 |
return encoded_string
|
| 110 |
|
| 111 |
-
def process_audio_rag(
|
| 112 |
"""Main processing function"""
|
| 113 |
-
if not
|
| 114 |
return "Please upload an audio file", None, None
|
| 115 |
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
# Embed chunks
|
| 120 |
-
embeddings = embed_audio_chunks(audios)
|
| 121 |
-
|
| 122 |
-
# Search for relevant chunks
|
| 123 |
-
top_indices = search_audio(query, embeddings, audios)
|
| 124 |
-
|
| 125 |
-
# Prepare results
|
| 126 |
-
result_text = f"Found {len(top_indices)} relevant audio chunks:\n"
|
| 127 |
-
result_text += f"Chunk indices: {top_indices}\n\n"
|
| 128 |
-
|
| 129 |
-
# Save first result as audio file
|
| 130 |
-
first_chunk_path = "result_chunk.wav"
|
| 131 |
-
wavfile.write(first_chunk_path, 16000, audios[top_indices[0]])
|
| 132 |
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
client = OpenAI(api_key=openai_key)
|
| 137 |
|
| 138 |
-
|
|
|
|
| 139 |
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
}
|
| 149 |
-
|
| 150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
ax.set_title(f"Waveform of top matching chunk (#{top_indices[0]})")
|
| 166 |
-
ax.set_xlabel("Samples")
|
| 167 |
-
ax.set_ylabel("Amplitude")
|
| 168 |
-
plt.tight_layout()
|
| 169 |
-
|
| 170 |
-
return result_text, first_chunk_path, fig
|
| 171 |
|
| 172 |
# Create Gradio interface
|
| 173 |
with gr.Blocks(title="AudioRAG Demo") as demo:
|
|
|
|
| 28 |
processor = ColQwen2_5OmniProcessor.from_pretrained("manu/colqwen-omni-v0.1")
|
| 29 |
return model, processor
|
| 30 |
|
| 31 |
+
def chunk_audio(audio_file_path, chunk_length=30):
|
| 32 |
"""Split audio into chunks"""
|
| 33 |
+
try:
|
| 34 |
+
# audio_file_path is already a string path when type="filepath"
|
| 35 |
+
audio = AudioSegment.from_file(audio_file_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
+
audios = []
|
| 38 |
+
target_rate = 16000
|
| 39 |
+
chunk_length_ms = chunk_length * 1000
|
| 40 |
|
| 41 |
+
for i in range(0, len(audio), chunk_length_ms):
|
| 42 |
+
chunk = audio[i:i + chunk_length_ms]
|
| 43 |
+
chunk = chunk.set_channels(1).set_frame_rate(target_rate)
|
| 44 |
+
|
| 45 |
+
buf = io.BytesIO()
|
| 46 |
+
chunk.export(buf, format="wav")
|
| 47 |
+
buf.seek(0)
|
| 48 |
+
|
| 49 |
+
rate, data = wavfile.read(buf)
|
| 50 |
+
audios.append(data)
|
| 51 |
+
|
| 52 |
+
return audios
|
| 53 |
+
except Exception as e:
|
| 54 |
+
raise gr.Error(f"Error processing audio file: {str(e)}. Make sure ffmpeg is installed.")
|
| 55 |
|
| 56 |
@spaces.GPU(duration=120)
|
| 57 |
def embed_audio_chunks(audios):
|
|
|
|
| 112 |
encoded_string = base64.b64encode(buf.read()).decode("utf-8")
|
| 113 |
return encoded_string
|
| 114 |
|
| 115 |
+
def process_audio_rag(audio_file_path, query, chunk_length=30, use_openai=False, openai_key=None):
|
| 116 |
"""Main processing function"""
|
| 117 |
+
if not audio_file_path:
|
| 118 |
return "Please upload an audio file", None, None
|
| 119 |
|
| 120 |
+
if not query:
|
| 121 |
+
return "Please enter a search query", None, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
|
| 123 |
+
try:
|
| 124 |
+
# Chunk audio
|
| 125 |
+
audios = chunk_audio(audio_file_path, chunk_length)
|
|
|
|
| 126 |
|
| 127 |
+
# Embed chunks
|
| 128 |
+
embeddings = embed_audio_chunks(audios)
|
| 129 |
|
| 130 |
+
# Search for relevant chunks
|
| 131 |
+
top_indices = search_audio(query, embeddings, audios)
|
| 132 |
+
|
| 133 |
+
# Prepare results
|
| 134 |
+
result_text = f"Found {len(top_indices)} relevant audio chunks:\n"
|
| 135 |
+
result_text += f"Chunk indices: {top_indices}\n\n"
|
| 136 |
+
|
| 137 |
+
# Save first result as audio file
|
| 138 |
+
first_chunk_path = "result_chunk.wav"
|
| 139 |
+
wavfile.write(first_chunk_path, 16000, audios[top_indices[0]])
|
| 140 |
+
|
| 141 |
+
# Optional: Use OpenAI for answer generation
|
| 142 |
+
if use_openai and openai_key:
|
| 143 |
+
from openai import OpenAI
|
| 144 |
+
client = OpenAI(api_key=openai_key)
|
| 145 |
+
|
| 146 |
+
content = [{"type": "text", "text": f"Answer the query using the audio files. Query: {query}"}]
|
| 147 |
+
|
| 148 |
+
for idx in top_indices[:3]: # Use top 3 chunks
|
| 149 |
+
content.extend([
|
| 150 |
+
{"type": "text", "text": f"Audio chunk #{idx}:"},
|
| 151 |
+
{
|
| 152 |
+
"type": "input_audio",
|
| 153 |
+
"input_audio": {
|
| 154 |
+
"data": audio_to_base64(audios[idx]),
|
| 155 |
+
"format": "wav"
|
| 156 |
+
}
|
| 157 |
}
|
| 158 |
+
])
|
| 159 |
+
|
| 160 |
+
try:
|
| 161 |
+
completion = client.chat.completions.create(
|
| 162 |
+
model="gpt-4o-audio-preview",
|
| 163 |
+
messages=[{"role": "user", "content": content}]
|
| 164 |
+
)
|
| 165 |
+
result_text += f"\nOpenAI Answer: {completion.choices[0].message.content}"
|
| 166 |
+
except Exception as e:
|
| 167 |
+
result_text += f"\nOpenAI Error: {str(e)}"
|
| 168 |
|
| 169 |
+
# Create audio visualization
|
| 170 |
+
import matplotlib.pyplot as plt
|
| 171 |
+
fig, ax = plt.subplots(figsize=(10, 4))
|
| 172 |
+
ax.plot(audios[top_indices[0]])
|
| 173 |
+
ax.set_title(f"Waveform of top matching chunk (#{top_indices[0]})")
|
| 174 |
+
ax.set_xlabel("Samples")
|
| 175 |
+
ax.set_ylabel("Amplitude")
|
| 176 |
+
plt.tight_layout()
|
| 177 |
+
|
| 178 |
+
return result_text, first_chunk_path, fig
|
| 179 |
+
|
| 180 |
+
except Exception as e:
|
| 181 |
+
return f"Error: {str(e)}", None, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
|
| 183 |
# Create Gradio interface
|
| 184 |
with gr.Blocks(title="AudioRAG Demo") as demo:
|