Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -115,10 +115,10 @@ def audio_to_base64(data, rate=16000):
|
|
| 115 |
def process_audio_rag(audio_file_path, query, chunk_length=30, use_openai=False, openai_key=None):
|
| 116 |
"""Main processing function"""
|
| 117 |
if not audio_file_path:
|
| 118 |
-
return "Please upload an audio file", None
|
| 119 |
|
| 120 |
if not query:
|
| 121 |
-
return "Please enter a search query", None
|
| 122 |
|
| 123 |
try:
|
| 124 |
# Chunk audio
|
|
@@ -132,7 +132,8 @@ def process_audio_rag(audio_file_path, query, chunk_length=30, use_openai=False,
|
|
| 132 |
|
| 133 |
# Prepare results
|
| 134 |
result_text = f"Found {len(top_indices)} relevant audio chunks:\n"
|
| 135 |
-
result_text += f"Chunk indices: {top_indices}\n
|
|
|
|
| 136 |
|
| 137 |
# Save first result as audio file
|
| 138 |
first_chunk_path = "result_chunk.wav"
|
|
@@ -140,6 +141,7 @@ def process_audio_rag(audio_file_path, query, chunk_length=30, use_openai=False,
|
|
| 140 |
|
| 141 |
# Optional: Use OpenAI for answer generation
|
| 142 |
if use_openai and openai_key:
|
|
|
|
| 143 |
from openai import OpenAI
|
| 144 |
client = OpenAI(api_key=openai_key)
|
| 145 |
|
|
@@ -162,28 +164,26 @@ def process_audio_rag(audio_file_path, query, chunk_length=30, use_openai=False,
|
|
| 162 |
model="gpt-4o-audio-preview",
|
| 163 |
messages=[{"role": "user", "content": content}]
|
| 164 |
)
|
| 165 |
-
result_text += f"
|
| 166 |
except Exception as e:
|
| 167 |
-
result_text += f"
|
| 168 |
|
| 169 |
-
|
| 170 |
-
import matplotlib.pyplot as plt
|
| 171 |
-
fig, ax = plt.subplots(figsize=(10, 4))
|
| 172 |
-
ax.plot(audios[top_indices[0]])
|
| 173 |
-
ax.set_title(f"Waveform of top matching chunk (#{top_indices[0]})")
|
| 174 |
-
ax.set_xlabel("Samples")
|
| 175 |
-
ax.set_ylabel("Amplitude")
|
| 176 |
-
plt.tight_layout()
|
| 177 |
-
|
| 178 |
-
return result_text, first_chunk_path, fig
|
| 179 |
|
| 180 |
except Exception as e:
|
| 181 |
-
return f"Error: {str(e)}", None
|
| 182 |
|
| 183 |
# Create Gradio interface
|
| 184 |
with gr.Blocks(title="AudioRAG Demo") as demo:
|
| 185 |
gr.Markdown("# AudioRAG Demo - Semantic Audio Search")
|
| 186 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
|
| 188 |
with gr.Row():
|
| 189 |
with gr.Column():
|
|
@@ -191,8 +191,9 @@ with gr.Blocks(title="AudioRAG Demo") as demo:
|
|
| 191 |
query_input = gr.Textbox(label="Search Query", placeholder="What are you looking for in the audio?")
|
| 192 |
chunk_length = gr.Slider(minimum=10, maximum=60, value=30, step=5, label="Chunk Length (seconds)")
|
| 193 |
|
| 194 |
-
with gr.Accordion("
|
| 195 |
-
|
|
|
|
| 196 |
openai_key = gr.Textbox(label="OpenAI API Key", type="password")
|
| 197 |
|
| 198 |
search_btn = gr.Button("Search Audio", variant="primary")
|
|
@@ -200,21 +201,19 @@ with gr.Blocks(title="AudioRAG Demo") as demo:
|
|
| 200 |
with gr.Column():
|
| 201 |
output_text = gr.Textbox(label="Results", lines=10)
|
| 202 |
output_audio = gr.Audio(label="Top Matching Audio Chunk", type="filepath")
|
| 203 |
-
output_plot = gr.Plot(label="Audio Waveform")
|
| 204 |
-
|
| 205 |
-
search_btn.click(
|
| 206 |
-
fn=process_audio_rag,
|
| 207 |
-
inputs=[audio_input, query_input, chunk_length, use_openai, openai_key],
|
| 208 |
-
outputs=[output_text, output_audio, output_plot]
|
| 209 |
-
)
|
| 210 |
|
| 211 |
gr.Examples(
|
| 212 |
examples=[
|
| 213 |
-
["
|
| 214 |
-
["podcast.mp3", "What did they say about climate change?", 20],
|
| 215 |
],
|
| 216 |
inputs=[audio_input, query_input, chunk_length]
|
| 217 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 218 |
|
| 219 |
if __name__ == "__main__":
|
| 220 |
# Load model on startup
|
|
|
|
| 115 |
def process_audio_rag(audio_file_path, query, chunk_length=30, use_openai=False, openai_key=None):
|
| 116 |
"""Main processing function"""
|
| 117 |
if not audio_file_path:
|
| 118 |
+
return "Please upload an audio file", None
|
| 119 |
|
| 120 |
if not query:
|
| 121 |
+
return "Please enter a search query", None
|
| 122 |
|
| 123 |
try:
|
| 124 |
# Chunk audio
|
|
|
|
| 132 |
|
| 133 |
# Prepare results
|
| 134 |
result_text = f"Found {len(top_indices)} relevant audio chunks:\n"
|
| 135 |
+
result_text += f"Chunk indices: {top_indices}\n"
|
| 136 |
+
result_text += f"Total chunks in audio: {len(audios)}\n\n"
|
| 137 |
|
| 138 |
# Save first result as audio file
|
| 139 |
first_chunk_path = "result_chunk.wav"
|
|
|
|
| 141 |
|
| 142 |
# Optional: Use OpenAI for answer generation
|
| 143 |
if use_openai and openai_key:
|
| 144 |
+
result_text += "Generating textual answer from retrieved audio chunks...\n\n"
|
| 145 |
from openai import OpenAI
|
| 146 |
client = OpenAI(api_key=openai_key)
|
| 147 |
|
|
|
|
| 164 |
model="gpt-4o-audio-preview",
|
| 165 |
messages=[{"role": "user", "content": content}]
|
| 166 |
)
|
| 167 |
+
result_text += f"OpenAI Answer: {completion.choices[0].message.content}"
|
| 168 |
except Exception as e:
|
| 169 |
+
result_text += f"OpenAI Error: {str(e)}"
|
| 170 |
|
| 171 |
+
return result_text, first_chunk_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
|
| 173 |
except Exception as e:
|
| 174 |
+
return f"Error: {str(e)}", None
|
| 175 |
|
| 176 |
# Create Gradio interface
|
| 177 |
with gr.Blocks(title="AudioRAG Demo") as demo:
|
| 178 |
gr.Markdown("# AudioRAG Demo - Semantic Audio Search")
|
| 179 |
+
gr.Markdown("""
|
| 180 |
+
This demo builds on the work from the ColQwen team, expanding retrieval capabilities beyond images to include audio and video. Inspired by the Qwen-Omni series, ColQwen-Omni (3B) pushes the boundaries of multimodal search — embedding and retrieving almost any type of content.
|
| 181 |
+
|
| 182 |
+
**What’s new?**
|
| 183 |
+
Unlike traditional methods, this model searches directly through raw audio without converting it to text. It understands semantic meaning in sound, speech, and audio patterns — making "AudioRAG" a real possibility.
|
| 184 |
+
|
| 185 |
+
📖 [Blog post](https://huggingface.co/blog/manu/colqwen-omni-omnimodal-retrieval) | 🤗 [Model on Hugging Face](https://huggingface.co/vidore/colqwen-omni-v0.1)
|
| 186 |
+
""")
|
| 187 |
|
| 188 |
with gr.Row():
|
| 189 |
with gr.Column():
|
|
|
|
| 191 |
query_input = gr.Textbox(label="Search Query", placeholder="What are you looking for in the audio?")
|
| 192 |
chunk_length = gr.Slider(minimum=10, maximum=60, value=30, step=5, label="Chunk Length (seconds)")
|
| 193 |
|
| 194 |
+
with gr.Accordion("API key for textual answer (Optional)", open=False):
|
| 195 |
+
gr.Markdown("Generate a textual answer based on the retrieved audio chunks with an OpenAI api key")
|
| 196 |
+
use_openai = gr.Checkbox(label="Generate textual answer from retrieved audio")
|
| 197 |
openai_key = gr.Textbox(label="OpenAI API Key", type="password")
|
| 198 |
|
| 199 |
search_btn = gr.Button("Search Audio", variant="primary")
|
|
|
|
| 201 |
with gr.Column():
|
| 202 |
output_text = gr.Textbox(label="Results", lines=10)
|
| 203 |
output_audio = gr.Audio(label="Top Matching Audio Chunk", type="filepath")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
|
| 205 |
gr.Examples(
|
| 206 |
examples=[
|
| 207 |
+
["test.m4a", "Who's the guest of the podcast?", 426],
|
|
|
|
| 208 |
],
|
| 209 |
inputs=[audio_input, query_input, chunk_length]
|
| 210 |
)
|
| 211 |
+
|
| 212 |
+
search_btn.click(
|
| 213 |
+
fn=process_audio_rag,
|
| 214 |
+
inputs=[audio_input, query_input, chunk_length, use_openai, openai_key],
|
| 215 |
+
outputs=[output_text, output_audio]
|
| 216 |
+
)
|
| 217 |
|
| 218 |
if __name__ == "__main__":
|
| 219 |
# Load model on startup
|