Spaces:
Running
on
Zero
Running
on
Zero
| from typing import Optional, Tuple, Union | |
| import torch | |
| from diffusers import FlowMatchEulerDiscreteScheduler | |
| from tqdm import tqdm | |
| import numpy as np | |
| from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import retrieve_timesteps | |
| def scale_noise( | |
| scheduler, | |
| sample: torch.FloatTensor, | |
| timestep: Union[float, torch.FloatTensor], | |
| noise: Optional[torch.FloatTensor] = None, | |
| ) -> torch.FloatTensor: | |
| """ | |
| Foward process in flow-matching | |
| Args: | |
| sample (`torch.FloatTensor`): | |
| The input sample. | |
| timestep (`int`, *optional*): | |
| The current timestep in the diffusion chain. | |
| Returns: | |
| `torch.FloatTensor`: | |
| A scaled input sample. | |
| """ | |
| # if scheduler.step_index is None: | |
| scheduler._init_step_index(timestep) | |
| sigma = scheduler.sigmas[scheduler.step_index] | |
| sample = sigma * noise + (1.0 - sigma) * sample | |
| return sample | |
| # for flux | |
| def calculate_shift( | |
| image_seq_len, | |
| base_seq_len: int = 256, | |
| max_seq_len: int = 4096, | |
| base_shift: float = 0.5, | |
| max_shift: float = 1.16, | |
| ): | |
| m = (max_shift - base_shift) / (max_seq_len - base_seq_len) | |
| b = base_shift - m * base_seq_len | |
| mu = image_seq_len * m + b | |
| return mu | |
| def calc_v_sd3(pipe, src_tar_latent_model_input, src_tar_prompt_embeds, src_tar_pooled_prompt_embeds, src_guidance_scale, tar_guidance_scale, t): | |
| # broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
| timestep = t.expand(src_tar_latent_model_input.shape[0]) | |
| # joint_attention_kwargs = {} | |
| # # add timestep to joint_attention_kwargs | |
| # joint_attention_kwargs["timestep"] = timestep[0] | |
| # joint_attention_kwargs["timestep_idx"] = i | |
| with torch.no_grad(): | |
| # # predict the noise for the source prompt | |
| noise_pred_src_tar = pipe.transformer( | |
| hidden_states=src_tar_latent_model_input, | |
| timestep=timestep, | |
| encoder_hidden_states=src_tar_prompt_embeds, | |
| pooled_projections=src_tar_pooled_prompt_embeds, | |
| joint_attention_kwargs=None, | |
| return_dict=False, | |
| )[0] | |
| # perform guidance source | |
| if pipe.do_classifier_free_guidance: | |
| src_noise_pred_uncond, src_noise_pred_text, tar_noise_pred_uncond, tar_noise_pred_text = noise_pred_src_tar.chunk(4) | |
| noise_pred_src = src_noise_pred_uncond + src_guidance_scale * (src_noise_pred_text - src_noise_pred_uncond) | |
| noise_pred_tar = tar_noise_pred_uncond + tar_guidance_scale * (tar_noise_pred_text - tar_noise_pred_uncond) | |
| return noise_pred_src, noise_pred_tar | |
| def calc_v_flux(pipe, latents, prompt_embeds, pooled_prompt_embeds, guidance, text_ids, latent_image_ids, t): | |
| # broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
| timestep = t.expand(latents.shape[0]) | |
| # joint_attention_kwargs = {} | |
| # # add timestep to joint_attention_kwargs | |
| # joint_attention_kwargs["timestep"] = timestep[0] | |
| # joint_attention_kwargs["timestep_idx"] = i | |
| with torch.no_grad(): | |
| # # predict the noise for the source prompt | |
| noise_pred = pipe.transformer( | |
| hidden_states=latents, | |
| timestep=timestep / 1000, | |
| guidance=guidance, | |
| encoder_hidden_states=prompt_embeds, | |
| txt_ids=text_ids, | |
| img_ids=latent_image_ids, | |
| pooled_projections=pooled_prompt_embeds, | |
| joint_attention_kwargs=None, | |
| return_dict=False, | |
| )[0] | |
| return noise_pred | |
| def FlowEditSD3(pipe, | |
| scheduler, | |
| x_src, | |
| src_prompt, | |
| tar_prompt, | |
| negative_prompt, | |
| T_steps: int = 50, | |
| n_avg: int = 1, | |
| src_guidance_scale: float = 3.5, | |
| tar_guidance_scale: float = 13.5, | |
| n_min: int = 0, | |
| n_max: int = 15,): | |
| device = x_src.device | |
| timesteps, T_steps = retrieve_timesteps(scheduler, T_steps, device, timesteps=None) | |
| num_warmup_steps = max(len(timesteps) - T_steps * scheduler.order, 0) | |
| pipe._num_timesteps = len(timesteps) | |
| pipe._guidance_scale = src_guidance_scale | |
| # src prompts | |
| ( | |
| src_prompt_embeds, | |
| src_negative_prompt_embeds, | |
| src_pooled_prompt_embeds, | |
| src_negative_pooled_prompt_embeds, | |
| ) = pipe.encode_prompt( | |
| prompt=src_prompt, | |
| prompt_2=None, | |
| prompt_3=None, | |
| negative_prompt=negative_prompt, | |
| do_classifier_free_guidance=pipe.do_classifier_free_guidance, | |
| device=device, | |
| ) | |
| # tar prompts | |
| pipe._guidance_scale = tar_guidance_scale | |
| ( | |
| tar_prompt_embeds, | |
| tar_negative_prompt_embeds, | |
| tar_pooled_prompt_embeds, | |
| tar_negative_pooled_prompt_embeds, | |
| ) = pipe.encode_prompt( | |
| prompt=tar_prompt, | |
| prompt_2=None, | |
| prompt_3=None, | |
| negative_prompt=negative_prompt, | |
| do_classifier_free_guidance=pipe.do_classifier_free_guidance, | |
| device=device, | |
| ) | |
| # CFG prep | |
| src_tar_prompt_embeds = torch.cat([src_negative_prompt_embeds, src_prompt_embeds, tar_negative_prompt_embeds, tar_prompt_embeds], dim=0) | |
| src_tar_pooled_prompt_embeds = torch.cat([src_negative_pooled_prompt_embeds, src_pooled_prompt_embeds, tar_negative_pooled_prompt_embeds, tar_pooled_prompt_embeds], dim=0) | |
| # initialize our ODE Zt_edit_1=x_src | |
| zt_edit = x_src.clone() | |
| for i, t in tqdm(enumerate(timesteps)): | |
| if T_steps - i > n_max: | |
| continue | |
| t_i = t/1000 | |
| if i+1 < len(timesteps): | |
| t_im1 = (timesteps[i+1])/1000 | |
| else: | |
| t_im1 = torch.zeros_like(t_i).to(t_i.device) | |
| if T_steps - i > n_min: | |
| # Calculate the average of the V predictions | |
| V_delta_avg = torch.zeros_like(x_src) | |
| for k in range(n_avg): | |
| fwd_noise = torch.randn_like(x_src).to(x_src.device) | |
| zt_src = (1-t_i)*x_src + (t_i)*fwd_noise | |
| zt_tar = zt_edit + zt_src - x_src | |
| src_tar_latent_model_input = torch.cat([zt_src, zt_src, zt_tar, zt_tar]) if pipe.do_classifier_free_guidance else (zt_src, zt_tar) | |
| Vt_src, Vt_tar = calc_v_sd3(pipe, src_tar_latent_model_input,src_tar_prompt_embeds, src_tar_pooled_prompt_embeds, src_guidance_scale, tar_guidance_scale, t) | |
| V_delta_avg += (1/n_avg) * (Vt_tar - Vt_src) # - (hfg-1)*( x_src)) | |
| # propagate direct ODE | |
| zt_edit = zt_edit.to(torch.float32) | |
| zt_edit = zt_edit + (t_im1 - t_i) * V_delta_avg | |
| zt_edit = zt_edit.to(V_delta_avg.dtype) | |
| else: # i >= T_steps-n_min # regular sampling for last n_min steps | |
| if i == T_steps-n_min: | |
| # initialize SDEDIT-style generation phase | |
| fwd_noise = torch.randn_like(x_src).to(x_src.device) | |
| xt_src = scale_noise(scheduler, x_src, t, noise=fwd_noise) | |
| xt_tar = zt_edit + xt_src - x_src | |
| src_tar_latent_model_input = torch.cat([xt_tar, xt_tar, xt_tar, xt_tar]) if pipe.do_classifier_free_guidance else (xt_src, xt_tar) | |
| _, noise_pred_tar = calc_v_sd3(pipe, src_tar_latent_model_input,src_tar_prompt_embeds, src_tar_pooled_prompt_embeds, src_guidance_scale, tar_guidance_scale, t) | |
| xt_tar = xt_tar.to(torch.float32) | |
| prev_sample = xt_tar + (t_im1 - t_im1) * (noise_pred_tar) | |
| prev_sample = prev_sample.to(noise_pred_tar.dtype) | |
| xt_tar = prev_sample | |
| return zt_edit if n_min == 0 else xt_tar | |
| def FlowEditFLUX(pipe, | |
| scheduler, | |
| x_src, | |
| src_prompt, | |
| tar_prompt, | |
| negative_prompt, | |
| T_steps: int = 28, | |
| n_avg: int = 1, | |
| src_guidance_scale: float = 1.5, | |
| tar_guidance_scale: float = 5.5, | |
| n_min: int = 0, | |
| n_max: int = 24,): | |
| device = x_src.device | |
| orig_height, orig_width = x_src.shape[2]*pipe.vae_scale_factor//2, x_src.shape[3]*pipe.vae_scale_factor//2 | |
| num_channels_latents = pipe.transformer.config.in_channels // 4 | |
| pipe.check_inputs( | |
| prompt=src_prompt, | |
| prompt_2=None, | |
| height=orig_height, | |
| width=orig_width, | |
| callback_on_step_end_tensor_inputs=None, | |
| max_sequence_length=512, | |
| ) | |
| x_src, latent_src_image_ids = pipe.prepare_latents(batch_size= x_src.shape[0], num_channels_latents=num_channels_latents, height=orig_height, width=orig_width, dtype=x_src.dtype, device=x_src.device, generator=None,latents=x_src) | |
| x_src_packed = pipe._pack_latents(x_src, x_src.shape[0], num_channels_latents, x_src.shape[2], x_src.shape[3]) | |
| latent_tar_image_ids = latent_src_image_ids | |
| # 5. Prepare timesteps | |
| sigmas = np.linspace(1.0, 1 / T_steps, T_steps) | |
| image_seq_len = x_src_packed.shape[1] | |
| mu = calculate_shift( | |
| image_seq_len, | |
| scheduler.config.base_image_seq_len, | |
| scheduler.config.max_image_seq_len, | |
| scheduler.config.base_shift, | |
| scheduler.config.max_shift, | |
| ) | |
| timesteps, T_steps = retrieve_timesteps( | |
| scheduler, | |
| T_steps, | |
| device, | |
| timesteps=None, | |
| sigmas=sigmas, | |
| mu=mu, | |
| ) | |
| num_warmup_steps = max(len(timesteps) - T_steps * pipe.scheduler.order, 0) | |
| pipe._num_timesteps = len(timesteps) | |
| # src prompts | |
| ( | |
| src_prompt_embeds, | |
| src_pooled_prompt_embeds, | |
| src_text_ids, | |
| ) = pipe.encode_prompt( | |
| prompt=src_prompt, | |
| prompt_2=None, | |
| device=device, | |
| ) | |
| # tar prompts | |
| pipe._guidance_scale = tar_guidance_scale | |
| ( | |
| tar_prompt_embeds, | |
| tar_pooled_prompt_embeds, | |
| tar_text_ids, | |
| ) = pipe.encode_prompt( | |
| prompt=tar_prompt, | |
| prompt_2=None, | |
| device=device, | |
| ) | |
| # handle guidance | |
| if pipe.transformer.config.guidance_embeds: | |
| src_guidance = torch.tensor([src_guidance_scale], device=device) | |
| src_guidance = src_guidance.expand(x_src_packed.shape[0]) | |
| tar_guidance = torch.tensor([tar_guidance_scale], device=device) | |
| tar_guidance = tar_guidance.expand(x_src_packed.shape[0]) | |
| else: | |
| src_guidance = None | |
| tar_guidance = None | |
| # initialize our ODE Zt_edit_1=x_src | |
| zt_edit = x_src_packed.clone() | |
| for i, t in tqdm(enumerate(timesteps)): | |
| if T_steps - i > n_max: | |
| continue | |
| scheduler._init_step_index(t) | |
| t_i = scheduler.sigmas[scheduler.step_index] | |
| if i < len(timesteps): | |
| t_im1 = scheduler.sigmas[scheduler.step_index + 1] | |
| else: | |
| t_im1 = t_i | |
| if T_steps - i > n_min: | |
| # Calculate the average of the V predictions | |
| V_delta_avg = torch.zeros_like(x_src_packed) | |
| for k in range(n_avg): | |
| fwd_noise = torch.randn_like(x_src_packed).to(x_src_packed.device) | |
| zt_src = (1-t_i)*x_src_packed + (t_i)*fwd_noise | |
| zt_tar = zt_edit + zt_src - x_src_packed | |
| # Merge in the future to avoid double computation | |
| Vt_src = calc_v_flux(pipe, | |
| latents=zt_src, | |
| prompt_embeds=src_prompt_embeds, | |
| pooled_prompt_embeds=src_pooled_prompt_embeds, | |
| guidance=src_guidance, | |
| text_ids=src_text_ids, | |
| latent_image_ids=latent_src_image_ids, | |
| t=t) | |
| Vt_tar = calc_v_flux(pipe, | |
| latents=zt_tar, | |
| prompt_embeds=tar_prompt_embeds, | |
| pooled_prompt_embeds=tar_pooled_prompt_embeds, | |
| guidance=tar_guidance, | |
| text_ids=tar_text_ids, | |
| latent_image_ids=latent_tar_image_ids, | |
| t=t) | |
| V_delta_avg += (1/n_avg) * (Vt_tar - Vt_src) # - (hfg-1)*( x_src)) | |
| # propagate direct ODE | |
| zt_edit = zt_edit.to(torch.float32) | |
| zt_edit = zt_edit + (t_im1 - t_i) * V_delta_avg | |
| zt_edit = zt_edit.to(V_delta_avg.dtype) | |
| else: # i >= T_steps-n_min # regular sampling last n_min steps | |
| if i == T_steps-n_min: | |
| # initialize SDEDIT-style generation phase | |
| fwd_noise = torch.randn_like(x_src_packed).to(x_src_packed.device) | |
| xt_src = scale_noise(scheduler, x_src_packed, t, noise=fwd_noise) | |
| xt_tar = zt_edit + xt_src - x_src_packed | |
| Vt_tar = calc_v_flux(pipe, | |
| latents=xt_tar, | |
| prompt_embeds=tar_prompt_embeds, | |
| pooled_prompt_embeds=tar_pooled_prompt_embeds, | |
| guidance=tar_guidance, | |
| text_ids=tar_text_ids, | |
| latent_image_ids=latent_tar_image_ids, | |
| t=t) | |
| xt_tar = xt_tar.to(torch.float32) | |
| prev_sample = xt_tar + (t_im1 - t_i) * (Vt_tar) | |
| prev_sample = prev_sample.to(Vt_tar.dtype) | |
| xt_tar = prev_sample | |
| out = zt_edit if n_min == 0 else xt_tar | |
| unpacked_out = pipe._unpack_latents(out, orig_height, orig_width, pipe.vae_scale_factor) | |
| return unpacked_out | |