Spaces:
Running
Running
Commit
·
85a99d8
1
Parent(s):
6f0dfc9
Initial commit
Browse files- .gitignore +4 -0
- README.md +5 -6
- app.py +205 -0
- constants.py +209 -0
- gradio_examples.py +4 -0
- style.css +3 -0
- utils.py +14 -0
.gitignore
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Byte-compiled / optimized / DLL files
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.py[cod]
|
| 4 |
+
*$py.class
|
README.md
CHANGED
|
@@ -1,13 +1,12 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version:
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
-
license: other
|
| 11 |
---
|
| 12 |
|
| 13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Real Time Latent Consistency Models
|
| 3 |
+
emoji: 👀
|
| 4 |
+
colorFrom: pink
|
| 5 |
+
colorTo: indigo
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 3.50.2
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
from collections import deque
|
| 3 |
+
from dataclasses import dataclass
|
| 4 |
+
from typing import Optional
|
| 5 |
+
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import websockets
|
| 8 |
+
from gradio.processing_utils import decode_base64_to_image, encode_pil_to_base64
|
| 9 |
+
from PIL import Image
|
| 10 |
+
from websockets.sync.client import connect
|
| 11 |
+
|
| 12 |
+
from constants import DESCRIPTION, WS_ADDRESS, LOGO
|
| 13 |
+
from utils import replace_background
|
| 14 |
+
|
| 15 |
+
from gradio_examples import EXAMPLES
|
| 16 |
+
|
| 17 |
+
MAX_QUEUE_SIZE = 4
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
@dataclass
|
| 21 |
+
class GenerationState:
|
| 22 |
+
prompts: deque
|
| 23 |
+
responses: deque
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def get_initial_state() -> GenerationState:
|
| 27 |
+
return GenerationState(
|
| 28 |
+
prompts=deque(maxlen=MAX_QUEUE_SIZE),
|
| 29 |
+
responses=deque(maxlen=MAX_QUEUE_SIZE),
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def load_initial_state(request: gr.Request) -> GenerationState:
|
| 34 |
+
print("Loading initial state for", request.client.host)
|
| 35 |
+
|
| 36 |
+
return get_initial_state()
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
async def put_to_queue(
|
| 40 |
+
image: Optional[Image.Image],
|
| 41 |
+
prompt: str,
|
| 42 |
+
seed: int,
|
| 43 |
+
strength: float,
|
| 44 |
+
state: GenerationState,
|
| 45 |
+
):
|
| 46 |
+
prompts_queue = state.prompts
|
| 47 |
+
|
| 48 |
+
if prompt and image is not None:
|
| 49 |
+
prompts_queue.append((image, prompt, seed, strength))
|
| 50 |
+
|
| 51 |
+
return state
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def send_inference_request(state: GenerationState) -> Image.Image:
|
| 55 |
+
prompts_queue = state.prompts
|
| 56 |
+
response_queue = state.responses
|
| 57 |
+
|
| 58 |
+
if len(prompts_queue) == 0:
|
| 59 |
+
return state
|
| 60 |
+
|
| 61 |
+
image, prompt, seed, strength = prompts_queue.popleft()
|
| 62 |
+
original_image_size = image.size
|
| 63 |
+
image = replace_background(image.resize((512, 512)))
|
| 64 |
+
|
| 65 |
+
arguments = {
|
| 66 |
+
"prompt": prompt,
|
| 67 |
+
"image_url": encode_pil_to_base64(image),
|
| 68 |
+
"strength": strength,
|
| 69 |
+
"negative_prompt": "cartoon, illustration, animation. face. male, female",
|
| 70 |
+
"seed": seed,
|
| 71 |
+
"guidance_scale": 1,
|
| 72 |
+
"num_inference_steps": 4,
|
| 73 |
+
"sync_mode": 1,
|
| 74 |
+
"num_images": 1,
|
| 75 |
+
}
|
| 76 |
+
|
| 77 |
+
connection = connect(WS_ADDRESS)
|
| 78 |
+
connection.send(json.dumps(arguments))
|
| 79 |
+
|
| 80 |
+
try:
|
| 81 |
+
response = json.loads(connection.recv())
|
| 82 |
+
except websockets.exceptions.ConnectionClosedOK:
|
| 83 |
+
print("Connection closed, reconnecting...")
|
| 84 |
+
# TODO: This is a hacky way to reconnect, but it works for now
|
| 85 |
+
# Ideally, we should be able to reconnect to the same connection
|
| 86 |
+
# and not have to create a new one
|
| 87 |
+
connection = connect(WS_ADDRESS)
|
| 88 |
+
try:
|
| 89 |
+
response = json.loads(connection.recv())
|
| 90 |
+
except websockets.exceptions.ConnectionClosedOK:
|
| 91 |
+
print("Connection closed again, aborting...")
|
| 92 |
+
return state
|
| 93 |
+
|
| 94 |
+
# TODO: If a new connection is created, the response do not contain the images.
|
| 95 |
+
if "images" in response:
|
| 96 |
+
response_queue.append((response, original_image_size))
|
| 97 |
+
|
| 98 |
+
return state
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
def update_output_image(state: GenerationState):
|
| 102 |
+
image_update = gr.update()
|
| 103 |
+
inference_time_update = gr.update()
|
| 104 |
+
|
| 105 |
+
response_queue = state.responses
|
| 106 |
+
|
| 107 |
+
if len(response_queue) > 0:
|
| 108 |
+
response, original_image_size = response_queue.popleft()
|
| 109 |
+
generated_image = decode_base64_to_image(response["images"][0]["url"])
|
| 110 |
+
inference_time = response["timings"]["inference"]
|
| 111 |
+
|
| 112 |
+
generated_image.resize(original_image_size).save("generated.png")
|
| 113 |
+
|
| 114 |
+
image_update = gr.update(value=generated_image.resize(original_image_size))
|
| 115 |
+
inference_time_update = gr.update(value=round(inference_time, 4))
|
| 116 |
+
|
| 117 |
+
return image_update, inference_time_update, state
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
with gr.Blocks(css="style.css", title=f"Realtime Latent Consistency Model") as demo:
|
| 121 |
+
generation_state = gr.State(get_initial_state())
|
| 122 |
+
|
| 123 |
+
gr.HTML(f'<div style="width: 70px;">{LOGO}</div>')
|
| 124 |
+
gr.Markdown(DESCRIPTION)
|
| 125 |
+
with gr.Row(variant="default"):
|
| 126 |
+
input_image = gr.Image(
|
| 127 |
+
tool="color-sketch",
|
| 128 |
+
source="canvas",
|
| 129 |
+
label="Initial Image",
|
| 130 |
+
type="pil",
|
| 131 |
+
height=512,
|
| 132 |
+
width=512,
|
| 133 |
+
brush_radius=40.0,
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
output_image = gr.Image(
|
| 137 |
+
label="Generated Image",
|
| 138 |
+
type="pil",
|
| 139 |
+
interactive=False,
|
| 140 |
+
elem_id="output_image",
|
| 141 |
+
)
|
| 142 |
+
with gr.Row():
|
| 143 |
+
with gr.Column(scale=23):
|
| 144 |
+
prompt_box = gr.Textbox(label="Prompt")
|
| 145 |
+
with gr.Column(scale=1):
|
| 146 |
+
inference_time_box = gr.Number(
|
| 147 |
+
label="Inference Time (s)", interactive=False
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
with gr.Accordion(label="Advanced Options", open=False):
|
| 151 |
+
with gr.Row():
|
| 152 |
+
with gr.Column():
|
| 153 |
+
strength = gr.Slider(
|
| 154 |
+
label="Strength",
|
| 155 |
+
minimum=0.1,
|
| 156 |
+
maximum=1.0,
|
| 157 |
+
step=0.05,
|
| 158 |
+
value=0.8,
|
| 159 |
+
info="""
|
| 160 |
+
Strength of the initial image that will be applied during inference.
|
| 161 |
+
""",
|
| 162 |
+
)
|
| 163 |
+
with gr.Column():
|
| 164 |
+
seed = gr.Slider(
|
| 165 |
+
label="Seed",
|
| 166 |
+
minimum=0,
|
| 167 |
+
maximum=2**31 - 1,
|
| 168 |
+
step=1,
|
| 169 |
+
randomize=True,
|
| 170 |
+
info="""
|
| 171 |
+
Seed for the random number generator.
|
| 172 |
+
""",
|
| 173 |
+
)
|
| 174 |
+
|
| 175 |
+
demo.load(
|
| 176 |
+
load_initial_state,
|
| 177 |
+
outputs=[generation_state],
|
| 178 |
+
)
|
| 179 |
+
demo.load(
|
| 180 |
+
send_inference_request,
|
| 181 |
+
inputs=[generation_state],
|
| 182 |
+
outputs=[generation_state],
|
| 183 |
+
every=0.1,
|
| 184 |
+
)
|
| 185 |
+
demo.load(
|
| 186 |
+
update_output_image,
|
| 187 |
+
inputs=[generation_state],
|
| 188 |
+
outputs=[output_image, inference_time_box, generation_state],
|
| 189 |
+
every=0.1,
|
| 190 |
+
)
|
| 191 |
+
|
| 192 |
+
for event in [input_image.change, prompt_box.change, strength.change, seed.change]:
|
| 193 |
+
event(
|
| 194 |
+
put_to_queue,
|
| 195 |
+
[input_image, prompt_box, seed, strength, generation_state],
|
| 196 |
+
[generation_state],
|
| 197 |
+
show_progress=False,
|
| 198 |
+
queue=True,
|
| 199 |
+
)
|
| 200 |
+
|
| 201 |
+
gr.Markdown("## Example Prompts")
|
| 202 |
+
gr.Examples(examples=EXAMPLES, inputs=[prompt_box], label="Examples")
|
| 203 |
+
|
| 204 |
+
if __name__ == "__main__":
|
| 205 |
+
demo.queue(concurrency_count=4, api_open=False).launch()
|
constants.py
ADDED
|
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
+
DESCRIPTION = """
|
| 4 |
+
# Real Time Latent Consistency Model Hosted on [fal.ai](https://fal.ai)
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
WS_ADDRESS = os.environ["WS_ADDRESS"]
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
LOGO = """
|
| 11 |
+
<svg
|
| 12 |
+
width="100%"
|
| 13 |
+
height="100%"
|
| 14 |
+
viewBox="0 0 89 32"
|
| 15 |
+
fill="none"
|
| 16 |
+
xmlns="http://www.w3.org/2000/svg"
|
| 17 |
+
>
|
| 18 |
+
<path
|
| 19 |
+
d="M52.308 3.07812H57.8465V4.92428H56.0003V6.77043H54.1541V10.4627H57.8465V12.3089H54.1541V25.232H52.308V27.0781H46.7695V25.232H48.6157V12.3089H46.7695V10.4627H48.6157V6.77043H50.4618V4.92428H52.308V3.07812Z"
|
| 20 |
+
fill="currentColor"
|
| 21 |
+
></path>
|
| 22 |
+
<path
|
| 23 |
+
d="M79.3849 23.3858H81.2311V25.232H83.0772V27.0781H88.6157V25.232H86.7695V23.3858H84.9234V4.92428H79.3849V23.3858Z"
|
| 24 |
+
fill="currentColor"
|
| 25 |
+
></path>
|
| 26 |
+
<path
|
| 27 |
+
d="M57.8465 14.155H59.6926V12.3089H61.5388V10.4627H70.7695V12.3089H74.4618V23.3858H76.308V25.232H78.1541V27.0781H72.6157V25.232H70.7695V23.3858H68.9234V14.155H67.0772V12.3089H65.2311V14.155H63.3849V23.3858H65.2311V25.232H67.0772V27.0781H61.5388V25.232H59.6926V23.3858H57.8465V14.155Z"
|
| 28 |
+
fill="currentColor"
|
| 29 |
+
></path>
|
| 30 |
+
<path
|
| 31 |
+
d="M67.0772 25.232V23.3858H68.9234V25.232H67.0772Z"
|
| 32 |
+
fill="currentColor"
|
| 33 |
+
></path>
|
| 34 |
+
<rect
|
| 35 |
+
opacity="0.22"
|
| 36 |
+
x="7.38477"
|
| 37 |
+
y="29.5391"
|
| 38 |
+
width="2.46154"
|
| 39 |
+
height="2.46154"
|
| 40 |
+
fill="#5F4CD9"
|
| 41 |
+
></rect>
|
| 42 |
+
<rect
|
| 43 |
+
opacity="0.85"
|
| 44 |
+
x="2.46094"
|
| 45 |
+
y="19.6914"
|
| 46 |
+
width="12.3077"
|
| 47 |
+
height="2.46154"
|
| 48 |
+
fill="#5F4CD9"
|
| 49 |
+
></rect>
|
| 50 |
+
<rect
|
| 51 |
+
x="4.92383"
|
| 52 |
+
y="17.2305"
|
| 53 |
+
width="9.84615"
|
| 54 |
+
height="2.46154"
|
| 55 |
+
fill="#5F4CD9"
|
| 56 |
+
></rect>
|
| 57 |
+
<rect
|
| 58 |
+
opacity="0.4"
|
| 59 |
+
x="7.38477"
|
| 60 |
+
y="27.0781"
|
| 61 |
+
width="4.92308"
|
| 62 |
+
height="2.46154"
|
| 63 |
+
fill="#5F4CD9"
|
| 64 |
+
></rect>
|
| 65 |
+
<rect
|
| 66 |
+
opacity="0.7"
|
| 67 |
+
y="22.1562"
|
| 68 |
+
width="14.7692"
|
| 69 |
+
height="2.46154"
|
| 70 |
+
fill="#5F4CD9"
|
| 71 |
+
></rect>
|
| 72 |
+
<rect
|
| 73 |
+
opacity="0.5"
|
| 74 |
+
x="7.38477"
|
| 75 |
+
y="24.6133"
|
| 76 |
+
width="7.38462"
|
| 77 |
+
height="2.46154"
|
| 78 |
+
fill="#5F4CD9"
|
| 79 |
+
></rect>
|
| 80 |
+
<rect
|
| 81 |
+
opacity="0.22"
|
| 82 |
+
x="7.38477"
|
| 83 |
+
y="12.3086"
|
| 84 |
+
width="2.46154"
|
| 85 |
+
height="2.46154"
|
| 86 |
+
fill="#5F4CD9"
|
| 87 |
+
></rect>
|
| 88 |
+
<rect
|
| 89 |
+
opacity="0.85"
|
| 90 |
+
x="2.46094"
|
| 91 |
+
y="2.46094"
|
| 92 |
+
width="12.3077"
|
| 93 |
+
height="2.46154"
|
| 94 |
+
fill="#5F4CD9"
|
| 95 |
+
></rect>
|
| 96 |
+
<rect x="4.92383" width="9.84615" height="2.46154" fill="#5F4CD9"></rect>
|
| 97 |
+
<rect
|
| 98 |
+
opacity="0.4"
|
| 99 |
+
x="7.38477"
|
| 100 |
+
y="9.84375"
|
| 101 |
+
width="4.92308"
|
| 102 |
+
height="2.46154"
|
| 103 |
+
fill="#5F4CD9"
|
| 104 |
+
></rect>
|
| 105 |
+
<rect
|
| 106 |
+
opacity="0.7"
|
| 107 |
+
y="4.92188"
|
| 108 |
+
width="14.7692"
|
| 109 |
+
height="2.46154"
|
| 110 |
+
fill="#5F4CD9"
|
| 111 |
+
></rect>
|
| 112 |
+
<rect
|
| 113 |
+
opacity="0.5"
|
| 114 |
+
x="7.38477"
|
| 115 |
+
y="7.38281"
|
| 116 |
+
width="7.38462"
|
| 117 |
+
height="2.46154"
|
| 118 |
+
fill="#5F4CD9"
|
| 119 |
+
></rect>
|
| 120 |
+
<rect
|
| 121 |
+
opacity="0.22"
|
| 122 |
+
x="24.6152"
|
| 123 |
+
y="29.5391"
|
| 124 |
+
width="2.46154"
|
| 125 |
+
height="2.46154"
|
| 126 |
+
fill="#5F4CD9"
|
| 127 |
+
></rect>
|
| 128 |
+
<rect
|
| 129 |
+
opacity="0.85"
|
| 130 |
+
x="19.6914"
|
| 131 |
+
y="19.6914"
|
| 132 |
+
width="12.3077"
|
| 133 |
+
height="2.46154"
|
| 134 |
+
fill="#5F4CD9"
|
| 135 |
+
></rect>
|
| 136 |
+
<rect
|
| 137 |
+
x="22.1543"
|
| 138 |
+
y="17.2305"
|
| 139 |
+
width="9.84615"
|
| 140 |
+
height="2.46154"
|
| 141 |
+
fill="#5F4CD9"
|
| 142 |
+
></rect>
|
| 143 |
+
<rect
|
| 144 |
+
opacity="0.4"
|
| 145 |
+
x="24.6152"
|
| 146 |
+
y="27.0781"
|
| 147 |
+
width="4.92308"
|
| 148 |
+
height="2.46154"
|
| 149 |
+
fill="#5F4CD9"
|
| 150 |
+
></rect>
|
| 151 |
+
<rect
|
| 152 |
+
opacity="0.7"
|
| 153 |
+
x="17.2305"
|
| 154 |
+
y="22.1562"
|
| 155 |
+
width="14.7692"
|
| 156 |
+
height="2.46154"
|
| 157 |
+
fill="#5F4CD9"
|
| 158 |
+
></rect>
|
| 159 |
+
<rect
|
| 160 |
+
opacity="0.5"
|
| 161 |
+
x="24.6152"
|
| 162 |
+
y="24.6133"
|
| 163 |
+
width="7.38462"
|
| 164 |
+
height="2.46154"
|
| 165 |
+
fill="#5F4CD9"
|
| 166 |
+
></rect>
|
| 167 |
+
<rect
|
| 168 |
+
opacity="0.22"
|
| 169 |
+
x="24.6152"
|
| 170 |
+
y="12.3086"
|
| 171 |
+
width="2.46154"
|
| 172 |
+
height="2.46154"
|
| 173 |
+
fill="#5F4CD9"
|
| 174 |
+
></rect>
|
| 175 |
+
<rect
|
| 176 |
+
opacity="0.85"
|
| 177 |
+
x="19.6914"
|
| 178 |
+
y="2.46094"
|
| 179 |
+
width="12.3077"
|
| 180 |
+
height="2.46154"
|
| 181 |
+
fill="#5F4CD9"
|
| 182 |
+
></rect>
|
| 183 |
+
<rect x="22.1543" width="9.84615" height="2.46154" fill="#5F4CD9"></rect>
|
| 184 |
+
<rect
|
| 185 |
+
opacity="0.4"
|
| 186 |
+
x="24.6152"
|
| 187 |
+
y="9.84375"
|
| 188 |
+
width="4.92308"
|
| 189 |
+
height="2.46154"
|
| 190 |
+
fill="#5F4CD9"
|
| 191 |
+
></rect>
|
| 192 |
+
<rect
|
| 193 |
+
opacity="0.7"
|
| 194 |
+
x="17.2305"
|
| 195 |
+
y="4.92188"
|
| 196 |
+
width="14.7692"
|
| 197 |
+
height="2.46154"
|
| 198 |
+
fill="#5F4CD9"
|
| 199 |
+
></rect>
|
| 200 |
+
<rect
|
| 201 |
+
opacity="0.5"
|
| 202 |
+
x="24.6152"
|
| 203 |
+
y="7.38281"
|
| 204 |
+
width="7.38462"
|
| 205 |
+
height="2.46154"
|
| 206 |
+
fill="#5F4CD9"
|
| 207 |
+
></rect>
|
| 208 |
+
</svg>
|
| 209 |
+
"""
|
gradio_examples.py
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
EXAMPLES = [
|
| 2 |
+
"a house on the water, oil painting",
|
| 3 |
+
"a sunset at a tropical beach with palm trees",
|
| 4 |
+
]
|
style.css
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
h1 {
|
| 2 |
+
text-align: center;
|
| 3 |
+
}
|
utils.py
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from PIL import Image
|
| 2 |
+
import numpy as np
|
| 3 |
+
|
| 4 |
+
def replace_background(image: Image.Image, new_background_color=(0, 255, 255)):
|
| 5 |
+
image_np = np.array(image)
|
| 6 |
+
|
| 7 |
+
white_threshold = 255 * 3
|
| 8 |
+
white_pixels = np.sum(image_np, axis=-1) == white_threshold
|
| 9 |
+
|
| 10 |
+
image_np[white_pixels] = new_background_color
|
| 11 |
+
|
| 12 |
+
result = Image.fromarray(image_np)
|
| 13 |
+
|
| 14 |
+
return result
|