import os from pathlib import Path import pandas as pd from datasets import Dataset, get_dataset_config_names, load_dataset from datasets.exceptions import DatasetNotFoundError from huggingface_hub.errors import RepositoryNotFoundError from joblib.memory import Memory from langcodes import standardize_tag cache = Memory(location=".cache", verbose=0).cache TOKEN = os.getenv("HUGGINGFACE_ACCESS_TOKEN") # Macrolanguage mappings: when standardize_tag returns a macrolanguage, # map it to the preferred specific variant for consistency across datasets. # This ensures results from different benchmarks use the same language code. MACROLANGUAGE_MAPPINGS = { "no": "nb", # Norwegian -> Norwegian Bokmål (most widely used variant) # Add more mappings here if they cause duplicate entries in the languages table: # "ms": "zsm", # Malay -> Standard Malay (if both appear in population data) # "ar": "arb", # Arabic -> Standard Arabic (if both appear in population data) # "zh": "cmn", # Chinese -> Mandarin Chinese (if both appear in population data) # Check LANGUAGE_SPEAKING_POPULATION to see which macrolanguages need mapping } def standardize_bcp47(tag: str, macro: bool = True) -> str: """Standardize a BCP-47 tag with consistent macrolanguage handling.""" standardized = standardize_tag(tag, macro=macro) return MACROLANGUAGE_MAPPINGS.get(standardized, standardized) @cache def _get_dataset_config_names(dataset, **kwargs): return get_dataset_config_names(dataset, **kwargs) @cache def _load_dataset(dataset, subset, **kwargs): return load_dataset(dataset, subset, **kwargs) # Cache individual dataset items to avoid reloading entire datasets @cache def _get_dataset_item(dataset, subset, split, index, **kwargs): """Load a single item from a dataset efficiently""" ds = load_dataset(dataset, subset, split=split, **kwargs) return ds[index] if index < len(ds) else None def load(fname: str): try: ds = load_dataset(f"fair-forward/evals-for-every-language-{fname}", token=TOKEN) return ds["train"].to_pandas() except (DatasetNotFoundError, RepositoryNotFoundError, KeyError): return pd.DataFrame() def save(df: pd.DataFrame, fname: str): df = df.drop(columns=["__index_level_0__"], errors="ignore") ds = Dataset.from_pandas(df) ds.push_to_hub(f"fair-forward/evals-for-every-language-{fname}", token=TOKEN) Path("results").mkdir(exist_ok=True) df.to_json(f"results/{fname}.json", orient="records", force_ascii=False, indent=2) def get_valid_task_languages(task_name: str) -> set: """Return set of bcp_47 codes that have data available for the given task.""" from datasets_.flores import flores, splits from datasets_.mmlu import tags_afrimmlu, tags_global_mmlu, tags_mmlu_autotranslated from datasets_.arc import tags_uhura_arc_easy, tags_uhura_arc_easy_translated from datasets_.truthfulqa import tags_uhura_truthfulqa from datasets_.mgsm import tags_mgsm, tags_afrimgsm, tags_gsm8kx, tags_gsm_autotranslated if task_name in ["translation_from", "translation_to", "classification"]: return set(flores["bcp_47"]) elif task_name == "mmlu": return set([*tags_afrimmlu.keys(), *tags_global_mmlu.keys(), *tags_mmlu_autotranslated.keys()]) elif task_name == "arc": return set([*tags_uhura_arc_easy.keys(), *tags_uhura_arc_easy_translated.keys()]) elif task_name == "truthfulqa": return set(tags_uhura_truthfulqa.keys()) elif task_name == "mgsm": return set([*tags_mgsm.keys(), *tags_afrimgsm.keys(), *tags_gsm8kx.keys(), *tags_gsm_autotranslated.keys()]) return set()