Spaces:
Running
Running
David Pomerenke
commited on
Commit
·
d1a7111
1
Parent(s):
9dbdcb2
Basic language table
Browse files- evals/languages.py +15 -16
- evals/main.py +16 -2
- frontend/public/results.json +0 -0
- frontend/src/App.js +38 -28
- frontend/src/components/LanguageTable.js +197 -0
- frontend/src/components/ModelTable.js +6 -6
- results.json +0 -0
evals/languages.py
CHANGED
|
@@ -21,21 +21,6 @@ languages["language_name"] = languages["bcp_47"].apply(
|
|
| 21 |
lambda x: Language.get(x).display_name()
|
| 22 |
)
|
| 23 |
|
| 24 |
-
# load script codes and names
|
| 25 |
-
scripts = pd.read_csv("data/ScriptCodes.csv").rename(
|
| 26 |
-
columns={"Code": "iso15924", "English Name": "script_name"}
|
| 27 |
-
)
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
def population(bcp_47):
|
| 31 |
-
items = {
|
| 32 |
-
re.sub(r"^[a-z]+-", "", lang): pop
|
| 33 |
-
for lang, pop in LANGUAGE_SPEAKING_POPULATION.items()
|
| 34 |
-
if re.match(rf"^{bcp_47}-[A-Z]{{2}}$", lang)
|
| 35 |
-
}
|
| 36 |
-
return items
|
| 37 |
-
|
| 38 |
-
|
| 39 |
glottolog = pd.read_csv(
|
| 40 |
"data/glottolog_languoid.csv/languoid.csv", na_values=[""], keep_default_na=False
|
| 41 |
) # Min _Nan_ Chinese is not N/A!
|
|
@@ -43,7 +28,6 @@ glottolog["bcp_47"] = glottolog["iso639P3code"].apply(
|
|
| 43 |
lambda x: standardize_tag(x, macro=True) if not pd.isna(x) else None
|
| 44 |
)
|
| 45 |
|
| 46 |
-
|
| 47 |
@cache
|
| 48 |
def language_family(bcp_47):
|
| 49 |
languoid = glottolog[glottolog["bcp_47"] == bcp_47].iloc[0]
|
|
@@ -52,6 +36,21 @@ def language_family(bcp_47):
|
|
| 52 |
family = glottolog[glottolog["id"] == languoid["family_id"]].iloc[0]
|
| 53 |
return family["name"]
|
| 54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
def script_name(iso15924):
|
| 57 |
return scripts[scripts["iso15924"] == iso15924]["script_name"].values[0]
|
|
|
|
| 21 |
lambda x: Language.get(x).display_name()
|
| 22 |
)
|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
glottolog = pd.read_csv(
|
| 25 |
"data/glottolog_languoid.csv/languoid.csv", na_values=[""], keep_default_na=False
|
| 26 |
) # Min _Nan_ Chinese is not N/A!
|
|
|
|
| 28 |
lambda x: standardize_tag(x, macro=True) if not pd.isna(x) else None
|
| 29 |
)
|
| 30 |
|
|
|
|
| 31 |
@cache
|
| 32 |
def language_family(bcp_47):
|
| 33 |
languoid = glottolog[glottolog["bcp_47"] == bcp_47].iloc[0]
|
|
|
|
| 36 |
family = glottolog[glottolog["id"] == languoid["family_id"]].iloc[0]
|
| 37 |
return family["name"]
|
| 38 |
|
| 39 |
+
languages["family"] = languages["bcp_47"].apply(language_family)
|
| 40 |
+
|
| 41 |
+
# load script codes and names
|
| 42 |
+
scripts = pd.read_csv("data/ScriptCodes.csv").rename(
|
| 43 |
+
columns={"Code": "iso15924", "English Name": "script_name"}
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def population(bcp_47):
|
| 48 |
+
items = {
|
| 49 |
+
re.sub(r"^[a-z]+-", "", lang): pop
|
| 50 |
+
for lang, pop in LANGUAGE_SPEAKING_POPULATION.items()
|
| 51 |
+
if re.match(rf"^{bcp_47}-[A-Z]{{2}}$", lang)
|
| 52 |
+
}
|
| 53 |
+
return items
|
| 54 |
|
| 55 |
def script_name(iso15924):
|
| 56 |
return scripts[scripts["iso15924"] == iso15924]["script_name"].values[0]
|
evals/main.py
CHANGED
|
@@ -95,6 +95,20 @@ def make_model_table(df):
|
|
| 95 |
return df
|
| 96 |
|
| 97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
async def main():
|
| 99 |
results = await evaluate()
|
| 100 |
results, lang_results, model_results, task_results = aggregate(results)
|
|
@@ -107,9 +121,9 @@ async def main():
|
|
| 107 |
with open("results.json", "w") as f:
|
| 108 |
json.dump(all_results, f, indent=2, ensure_ascii=False)
|
| 109 |
|
| 110 |
-
model_table = make_model_table(model_results)
|
| 111 |
all_tables = {
|
| 112 |
-
"model_table": serialize(
|
|
|
|
| 113 |
}
|
| 114 |
with open("frontend/public/results.json", "w") as f:
|
| 115 |
json.dump(all_tables, f, indent=2, ensure_ascii=False)
|
|
|
|
| 95 |
return df
|
| 96 |
|
| 97 |
|
| 98 |
+
def make_language_table(df):
|
| 99 |
+
df["task_metric"] = df["task"] + "_" + df["metric"]
|
| 100 |
+
df = df.drop(columns=["task", "metric"])
|
| 101 |
+
task_metrics = df["task_metric"].unique()
|
| 102 |
+
df = df.pivot(index="bcp_47", columns="task_metric", values="score").fillna(0).reset_index()
|
| 103 |
+
df["average"] = df[task_metrics].mean(axis=1)
|
| 104 |
+
for row in [*task_metrics, "average"]:
|
| 105 |
+
df[row] = df[row].round(2)
|
| 106 |
+
df = pd.merge(languages, df, on="bcp_47", how="outer")
|
| 107 |
+
df = df.sort_values(by="average", ascending=False)
|
| 108 |
+
df = df[["language_name", "speakers", "family", "average", "in_benchmark", *task_metrics]]
|
| 109 |
+
return df
|
| 110 |
+
|
| 111 |
+
|
| 112 |
async def main():
|
| 113 |
results = await evaluate()
|
| 114 |
results, lang_results, model_results, task_results = aggregate(results)
|
|
|
|
| 121 |
with open("results.json", "w") as f:
|
| 122 |
json.dump(all_results, f, indent=2, ensure_ascii=False)
|
| 123 |
|
|
|
|
| 124 |
all_tables = {
|
| 125 |
+
"model_table": serialize(make_model_table(model_results)),
|
| 126 |
+
"language_table": serialize(make_language_table(lang_results)),
|
| 127 |
}
|
| 128 |
with open("frontend/public/results.json", "w") as f:
|
| 129 |
json.dump(all_tables, f, indent=2, ensure_ascii=False)
|
frontend/public/results.json
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
frontend/src/App.js
CHANGED
|
@@ -1,53 +1,63 @@
|
|
| 1 |
-
import './App.css'
|
| 2 |
-
import { useState, useEffect } from 'react'
|
| 3 |
-
import { PrimeReactProvider } from 'primereact/api'
|
| 4 |
-
import
|
| 5 |
-
import ModelTable from './components/ModelTable'
|
|
|
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
const [
|
| 11 |
-
const [loading, setLoading] = useState(true);
|
| 12 |
-
const [error, setError] = useState(null);
|
| 13 |
|
| 14 |
useEffect(() => {
|
| 15 |
fetch('/results.json')
|
| 16 |
.then(response => {
|
| 17 |
if (!response.ok) {
|
| 18 |
-
throw new Error('Network response was not ok')
|
| 19 |
}
|
| 20 |
-
return response.json()
|
| 21 |
})
|
| 22 |
.then(jsonData => {
|
| 23 |
-
setData(jsonData)
|
| 24 |
-
setLoading(false)
|
| 25 |
})
|
| 26 |
.catch(err => {
|
| 27 |
-
setError(err.message)
|
| 28 |
-
setLoading(false)
|
| 29 |
-
})
|
| 30 |
-
}, [])
|
| 31 |
|
| 32 |
return (
|
| 33 |
-
<div className=
|
| 34 |
-
<header className=
|
| 35 |
-
<div className=
|
| 36 |
-
<span
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
</div>
|
| 38 |
<h1>Global AI Language Monitor</h1>
|
| 39 |
<p>Tracking language proficiency of AI models for every language</p>
|
| 40 |
-
|
| 41 |
-
<div className=
|
| 42 |
<PrimeReactProvider>
|
| 43 |
{loading && <p>...</p>}
|
| 44 |
{error && <p>Error: {error}</p>}
|
| 45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
</PrimeReactProvider>
|
| 47 |
</div>
|
| 48 |
</header>
|
| 49 |
</div>
|
| 50 |
-
)
|
| 51 |
}
|
| 52 |
|
| 53 |
-
export default App
|
|
|
|
| 1 |
+
import './App.css'
|
| 2 |
+
import { useState, useEffect } from 'react'
|
| 3 |
+
import { PrimeReactProvider } from 'primereact/api'
|
| 4 |
+
import 'primereact/resources/themes/lara-light-cyan/theme.css'
|
| 5 |
+
import ModelTable from './components/ModelTable'
|
| 6 |
+
import LanguageTable from './components/LanguageTable'
|
| 7 |
|
| 8 |
+
function App () {
|
| 9 |
+
const [data, setData] = useState(null)
|
| 10 |
+
const [loading, setLoading] = useState(true)
|
| 11 |
+
const [error, setError] = useState(null)
|
|
|
|
|
|
|
| 12 |
|
| 13 |
useEffect(() => {
|
| 14 |
fetch('/results.json')
|
| 15 |
.then(response => {
|
| 16 |
if (!response.ok) {
|
| 17 |
+
throw new Error('Network response was not ok')
|
| 18 |
}
|
| 19 |
+
return response.json()
|
| 20 |
})
|
| 21 |
.then(jsonData => {
|
| 22 |
+
setData(jsonData)
|
| 23 |
+
setLoading(false)
|
| 24 |
})
|
| 25 |
.catch(err => {
|
| 26 |
+
setError(err.message)
|
| 27 |
+
setLoading(false)
|
| 28 |
+
})
|
| 29 |
+
}, [])
|
| 30 |
|
| 31 |
return (
|
| 32 |
+
<div className='App'>
|
| 33 |
+
<header className='App-header'>
|
| 34 |
+
<div className='emoji-container'>
|
| 35 |
+
<span
|
| 36 |
+
role='img'
|
| 37 |
+
aria-label='Hugging Face Emoji'
|
| 38 |
+
className='header-emoji'
|
| 39 |
+
>
|
| 40 |
+
🌍
|
| 41 |
+
</span>
|
| 42 |
</div>
|
| 43 |
<h1>Global AI Language Monitor</h1>
|
| 44 |
<p>Tracking language proficiency of AI models for every language</p>
|
| 45 |
+
|
| 46 |
+
<div className='data-container' style={{ width: '100%' }}>
|
| 47 |
<PrimeReactProvider>
|
| 48 |
{loading && <p>...</p>}
|
| 49 |
{error && <p>Error: {error}</p>}
|
| 50 |
+
{data && (
|
| 51 |
+
<div style={{ display: 'flex', flexDirection: 'row', gap: '2rem' }}>
|
| 52 |
+
<ModelTable data={data} />
|
| 53 |
+
<LanguageTable data={data} />
|
| 54 |
+
</div>
|
| 55 |
+
)}
|
| 56 |
</PrimeReactProvider>
|
| 57 |
</div>
|
| 58 |
</header>
|
| 59 |
</div>
|
| 60 |
+
)
|
| 61 |
}
|
| 62 |
|
| 63 |
+
export default App
|
frontend/src/components/LanguageTable.js
ADDED
|
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import { DataTable } from 'primereact/datatable'
|
| 2 |
+
import { Column } from 'primereact/column'
|
| 3 |
+
import { FilterMatchMode } from 'primereact/api'
|
| 4 |
+
import { MultiSelect } from 'primereact/multiselect'
|
| 5 |
+
import { useState, useEffect } from 'react'
|
| 6 |
+
import { Slider } from 'primereact/slider'
|
| 7 |
+
import ScoreField from './ScoreField'
|
| 8 |
+
|
| 9 |
+
const LanguageTable = ({ data }) => {
|
| 10 |
+
const [filters, setFilters] = useState({
|
| 11 |
+
language_name: { value: null, matchMode: FilterMatchMode.CONTAINS },
|
| 12 |
+
family: { value: null, matchMode: FilterMatchMode.IN },
|
| 13 |
+
speakers: { value: null, matchMode: FilterMatchMode.BETWEEN },
|
| 14 |
+
})
|
| 15 |
+
const table = data.language_table
|
| 16 |
+
|
| 17 |
+
const families = [...new Set(table.map(item => item.family))]
|
| 18 |
+
const familyRowFilterTemplate = options => {
|
| 19 |
+
return (
|
| 20 |
+
<MultiSelect
|
| 21 |
+
value={options.value}
|
| 22 |
+
options={families}
|
| 23 |
+
onChange={e => {
|
| 24 |
+
options.filterApplyCallback(e.value)
|
| 25 |
+
setFilters(prevFilters => ({
|
| 26 |
+
...prevFilters,
|
| 27 |
+
family: { value: e.value, matchMode: FilterMatchMode.IN }
|
| 28 |
+
}))
|
| 29 |
+
}}
|
| 30 |
+
placeholder='All families'
|
| 31 |
+
/>
|
| 32 |
+
)
|
| 33 |
+
}
|
| 34 |
+
|
| 35 |
+
const formatPopulation = population => {
|
| 36 |
+
if (population === null) {
|
| 37 |
+
return ''
|
| 38 |
+
} else if (population < 1000) {
|
| 39 |
+
return population.toFixed(0) + ''
|
| 40 |
+
} else if (population < 1000 * 1000) {
|
| 41 |
+
return (population / 1000).toFixed(1) + 'K'
|
| 42 |
+
} else if (population < 1000 * 1000 * 1000) {
|
| 43 |
+
return (population / 1000 / 1000).toFixed(1) + 'M'
|
| 44 |
+
} else {
|
| 45 |
+
return (population / 1000 / 1000 / 1000).toFixed(1) + 'B'
|
| 46 |
+
}
|
| 47 |
+
}
|
| 48 |
+
|
| 49 |
+
const SliderWithLabel = ({ value, onChange }) => {
|
| 50 |
+
const p = 10
|
| 51 |
+
const min = 2
|
| 52 |
+
const max = 12
|
| 53 |
+
const start = value === null ? min : Math.log(value[0]) / Math.log(p)
|
| 54 |
+
const stop = value === null ? max : Math.log(value[1]) / Math.log(p)
|
| 55 |
+
const [_value, _setValue] = useState([start, stop])
|
| 56 |
+
useEffect(() => {
|
| 57 |
+
const timer = setTimeout(() => {
|
| 58 |
+
onChange({
|
| 59 |
+
value:
|
| 60 |
+
_value[0] <= min + 0.1 && _value[1] >= max - 0.1
|
| 61 |
+
? null
|
| 62 |
+
: [p ** _value[0], p ** _value[1]]
|
| 63 |
+
})
|
| 64 |
+
}, 1000)
|
| 65 |
+
return () => clearTimeout(timer)
|
| 66 |
+
}, [_value, onChange])
|
| 67 |
+
return (
|
| 68 |
+
<div style={{ minWidth: '20rem' }}>
|
| 69 |
+
<div>{formatPopulation(p ** _value[0])}</div>
|
| 70 |
+
<div>{formatPopulation(p ** _value[1])}</div>
|
| 71 |
+
<Slider
|
| 72 |
+
value={_value}
|
| 73 |
+
onChange={e => _setValue(e.value)}
|
| 74 |
+
placeholder='All sizes'
|
| 75 |
+
min={min}
|
| 76 |
+
max={max}
|
| 77 |
+
step={0.01}
|
| 78 |
+
range
|
| 79 |
+
style={{ marginTop: '5rem' }}
|
| 80 |
+
/>
|
| 81 |
+
</div>
|
| 82 |
+
)
|
| 83 |
+
}
|
| 84 |
+
|
| 85 |
+
const speakerFilterTemplate = options => {
|
| 86 |
+
return (
|
| 87 |
+
<SliderWithLabel
|
| 88 |
+
value={options.value}
|
| 89 |
+
onChange={e => {
|
| 90 |
+
options.filterApplyCallback(e.value)
|
| 91 |
+
setFilters(prevFilters => ({
|
| 92 |
+
...prevFilters,
|
| 93 |
+
speakers: { value: e.value, matchMode: FilterMatchMode.BETWEEN }
|
| 94 |
+
}))
|
| 95 |
+
}}
|
| 96 |
+
/>
|
| 97 |
+
)
|
| 98 |
+
}
|
| 99 |
+
|
| 100 |
+
const speakerBodyTemplate = rowData => {
|
| 101 |
+
const populationStr = formatPopulation(rowData.speakers)
|
| 102 |
+
return <div>{populationStr}</div>
|
| 103 |
+
}
|
| 104 |
+
|
| 105 |
+
const languageBodyTemplate = rowData => {
|
| 106 |
+
return <div style={{ fontWeight: 'bold' }}>{rowData.language_name}</div>
|
| 107 |
+
}
|
| 108 |
+
|
| 109 |
+
const scoreBodyTemplate = (field, options = {}) => {
|
| 110 |
+
const { minScore = 0, maxScore = 1 } = options
|
| 111 |
+
|
| 112 |
+
return rowData => {
|
| 113 |
+
const score = rowData[field]
|
| 114 |
+
return ScoreField(score, minScore, maxScore)
|
| 115 |
+
}
|
| 116 |
+
}
|
| 117 |
+
|
| 118 |
+
return (
|
| 119 |
+
<DataTable
|
| 120 |
+
value={table}
|
| 121 |
+
header={<>Languages</>}
|
| 122 |
+
sortField='speakers'
|
| 123 |
+
removableSort
|
| 124 |
+
filters={filters}
|
| 125 |
+
filterDisplay='menu'
|
| 126 |
+
scrollable
|
| 127 |
+
scrollHeight='500px'
|
| 128 |
+
style={{ minWidth: '200px' }}
|
| 129 |
+
>
|
| 130 |
+
<Column
|
| 131 |
+
field='language_name'
|
| 132 |
+
header='Language'
|
| 133 |
+
body={languageBodyTemplate}
|
| 134 |
+
filter
|
| 135 |
+
showFilterMatchModes={false}
|
| 136 |
+
style={{ minWidth: '5rem' }}
|
| 137 |
+
frozen
|
| 138 |
+
/>
|
| 139 |
+
<Column
|
| 140 |
+
field='speakers'
|
| 141 |
+
header='Speakers'
|
| 142 |
+
body={speakerBodyTemplate}
|
| 143 |
+
filter
|
| 144 |
+
filterElement={speakerFilterTemplate}
|
| 145 |
+
showFilterMatchModes={false}
|
| 146 |
+
style={{ minWidth: '5rem' }}
|
| 147 |
+
/>
|
| 148 |
+
<Column
|
| 149 |
+
field='family'
|
| 150 |
+
header='Family'
|
| 151 |
+
filter
|
| 152 |
+
showFilterMatchModes={false}
|
| 153 |
+
filterElement={familyRowFilterTemplate}
|
| 154 |
+
style={{ minWidth: '10rem' }}
|
| 155 |
+
/>
|
| 156 |
+
<Column
|
| 157 |
+
field='average'
|
| 158 |
+
header='Average'
|
| 159 |
+
sortable
|
| 160 |
+
body={scoreBodyTemplate('average', { minScore: 0.4, maxScore: 0.8 })}
|
| 161 |
+
style={{ minWidth: '5rem', maxWidth: '10rem' }}
|
| 162 |
+
/>
|
| 163 |
+
<Column
|
| 164 |
+
field='translation_chrf'
|
| 165 |
+
header='Translation'
|
| 166 |
+
sortable
|
| 167 |
+
body={scoreBodyTemplate('translation_chrf', {
|
| 168 |
+
minScore: 0.4,
|
| 169 |
+
maxScore: 0.7
|
| 170 |
+
})}
|
| 171 |
+
style={{ minWidth: '5rem', maxWidth: '10rem' }}
|
| 172 |
+
/>
|
| 173 |
+
<Column
|
| 174 |
+
field='classification_accuracy'
|
| 175 |
+
header='Classification'
|
| 176 |
+
sortable
|
| 177 |
+
body={scoreBodyTemplate('classification_accuracy', {
|
| 178 |
+
minScore: 0.4,
|
| 179 |
+
maxScore: 1
|
| 180 |
+
})}
|
| 181 |
+
style={{ minWidth: '5rem', maxWidth: '10rem' }}
|
| 182 |
+
/>
|
| 183 |
+
<Column
|
| 184 |
+
field='language_modeling_chrf'
|
| 185 |
+
header='Language Modeling'
|
| 186 |
+
sortable
|
| 187 |
+
body={scoreBodyTemplate('language_modeling_chrf', {
|
| 188 |
+
minScore: 0.8,
|
| 189 |
+
maxScore: 1
|
| 190 |
+
})}
|
| 191 |
+
style={{ minWidth: '5rem', maxWidth: '10rem' }}
|
| 192 |
+
/>
|
| 193 |
+
</DataTable>
|
| 194 |
+
)
|
| 195 |
+
}
|
| 196 |
+
|
| 197 |
+
export default LanguageTable
|
frontend/src/components/ModelTable.js
CHANGED
|
@@ -124,7 +124,7 @@ const ModelTable = ({ data }) => {
|
|
| 124 |
}
|
| 125 |
|
| 126 |
const modelBodyTemplate = rowData => {
|
| 127 |
-
return <div style={{ fontWeight: 'bold' }}>{rowData.model}</div>
|
| 128 |
}
|
| 129 |
|
| 130 |
const scoreBodyTemplate = (field, options = {}) => {
|
|
@@ -162,7 +162,7 @@ const ModelTable = ({ data }) => {
|
|
| 162 |
header='Model'
|
| 163 |
filter
|
| 164 |
showFilterMatchModes={false}
|
| 165 |
-
style={{ minWidth: '
|
| 166 |
body={modelBodyTemplate}
|
| 167 |
frozen
|
| 168 |
/>
|
|
@@ -188,7 +188,7 @@ const ModelTable = ({ data }) => {
|
|
| 188 |
field='average'
|
| 189 |
header='Average'
|
| 190 |
sortable
|
| 191 |
-
body={scoreBodyTemplate('average', { minScore: 0.
|
| 192 |
style={{ minWidth: '5rem', maxWidth: '10rem' }}
|
| 193 |
/>
|
| 194 |
<Column
|
|
@@ -196,7 +196,7 @@ const ModelTable = ({ data }) => {
|
|
| 196 |
header='Translation'
|
| 197 |
sortable
|
| 198 |
body={scoreBodyTemplate('translation_chrf', {
|
| 199 |
-
minScore: 0.
|
| 200 |
maxScore: 0.7
|
| 201 |
})}
|
| 202 |
style={{ minWidth: '5rem', maxWidth: '10rem' }}
|
|
@@ -206,8 +206,8 @@ const ModelTable = ({ data }) => {
|
|
| 206 |
header='Classification'
|
| 207 |
sortable
|
| 208 |
body={scoreBodyTemplate('classification_accuracy', {
|
| 209 |
-
minScore: 0.
|
| 210 |
-
maxScore:
|
| 211 |
})}
|
| 212 |
style={{ minWidth: '5rem', maxWidth: '10rem' }}
|
| 213 |
/>
|
|
|
|
| 124 |
}
|
| 125 |
|
| 126 |
const modelBodyTemplate = rowData => {
|
| 127 |
+
return <div style={{ fontWeight: 'bold', height: '100%' }}>{rowData.model}</div>
|
| 128 |
}
|
| 129 |
|
| 130 |
const scoreBodyTemplate = (field, options = {}) => {
|
|
|
|
| 162 |
header='Model'
|
| 163 |
filter
|
| 164 |
showFilterMatchModes={false}
|
| 165 |
+
style={{ minWidth: '10rem' }}
|
| 166 |
body={modelBodyTemplate}
|
| 167 |
frozen
|
| 168 |
/>
|
|
|
|
| 188 |
field='average'
|
| 189 |
header='Average'
|
| 190 |
sortable
|
| 191 |
+
body={scoreBodyTemplate('average', { minScore: 0.3, maxScore: 0.6 })}
|
| 192 |
style={{ minWidth: '5rem', maxWidth: '10rem' }}
|
| 193 |
/>
|
| 194 |
<Column
|
|
|
|
| 196 |
header='Translation'
|
| 197 |
sortable
|
| 198 |
body={scoreBodyTemplate('translation_chrf', {
|
| 199 |
+
minScore: 0.3,
|
| 200 |
maxScore: 0.7
|
| 201 |
})}
|
| 202 |
style={{ minWidth: '5rem', maxWidth: '10rem' }}
|
|
|
|
| 206 |
header='Classification'
|
| 207 |
sortable
|
| 208 |
body={scoreBodyTemplate('classification_accuracy', {
|
| 209 |
+
minScore: 0.3,
|
| 210 |
+
maxScore: 0.8
|
| 211 |
})}
|
| 212 |
style={{ minWidth: '5rem', maxWidth: '10rem' }}
|
| 213 |
/>
|
results.json
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|