Spaces:
Running
Running
David Pomerenke
commited on
Commit
·
a65282b
1
Parent(s):
d597fe1
Nice tables and plots
Browse files- app.py +124 -41
- evals.py +3 -3
- results.json +302 -92
app.py
CHANGED
|
@@ -2,12 +2,12 @@ import gradio as gr
|
|
| 2 |
import json
|
| 3 |
import pandas as pd
|
| 4 |
import plotly.graph_objects as go
|
| 5 |
-
from plotly.subplots import make_subplots
|
| 6 |
|
| 7 |
# Load and process results
|
| 8 |
with open("results.json") as f:
|
| 9 |
results = json.load(f)
|
| 10 |
|
|
|
|
| 11 |
def create_model_comparison_plot(results):
|
| 12 |
# Extract all unique models
|
| 13 |
models = set()
|
|
@@ -15,96 +15,179 @@ def create_model_comparison_plot(results):
|
|
| 15 |
for score in lang["scores"]:
|
| 16 |
models.add(score["model"])
|
| 17 |
models = list(models)
|
| 18 |
-
|
| 19 |
# Create traces for each model
|
| 20 |
traces = []
|
| 21 |
for model in models:
|
| 22 |
x_vals = [] # languages
|
| 23 |
y_vals = [] # BLEU scores
|
| 24 |
-
|
| 25 |
for lang in results:
|
| 26 |
-
model_score = next(
|
|
|
|
|
|
|
| 27 |
if model_score is not None:
|
| 28 |
x_vals.append(lang["language_name"])
|
| 29 |
y_vals.append(model_score)
|
| 30 |
-
|
| 31 |
-
traces.append(
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
|
|
|
|
|
|
| 37 |
fig = go.Figure(data=traces)
|
| 38 |
fig.update_layout(
|
| 39 |
title="BLEU Scores by Model and Language",
|
| 40 |
xaxis_title="Language",
|
| 41 |
yaxis_title="BLEU Score",
|
| 42 |
-
barmode=
|
| 43 |
-
height=500
|
| 44 |
)
|
| 45 |
return fig
|
| 46 |
|
|
|
|
| 47 |
def create_scatter_plot(results):
|
| 48 |
fig = go.Figure()
|
| 49 |
-
|
| 50 |
x_vals = [lang["speakers"] / 1_000_000 for lang in results] # Convert to millions
|
| 51 |
y_vals = [lang["bleu"] for lang in results]
|
| 52 |
labels = [lang["language_name"] for lang in results]
|
| 53 |
-
|
| 54 |
-
fig.add_trace(
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
|
|
|
|
|
|
| 65 |
fig.update_layout(
|
| 66 |
title="Language Coverage: Speakers vs BLEU Score",
|
| 67 |
xaxis_title="Number of Speakers (Millions)",
|
| 68 |
yaxis_title="Average BLEU Score",
|
| 69 |
height=500,
|
| 70 |
-
showlegend=False
|
| 71 |
)
|
| 72 |
-
|
| 73 |
# Use log scale for x-axis since speaker numbers vary widely
|
| 74 |
fig.update_xaxes(type="log")
|
| 75 |
-
|
| 76 |
return fig
|
| 77 |
|
|
|
|
| 78 |
def create_results_df(results):
|
| 79 |
# Create a list to store flattened data
|
| 80 |
flat_data = []
|
| 81 |
-
|
| 82 |
for lang in results:
|
|
|
|
|
|
|
|
|
|
| 83 |
row = {
|
| 84 |
"Language": lang["language_name"],
|
| 85 |
"Speakers (M)": round(lang["speakers"] / 1_000_000, 1),
|
| 86 |
-
"
|
|
|
|
|
|
|
|
|
|
| 87 |
}
|
| 88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
for score in lang["scores"]:
|
| 90 |
-
model_name = score["model"].split(
|
| 91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
|
| 93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
|
| 95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
|
| 97 |
# Create the visualization components
|
| 98 |
with gr.Blocks(title="AI Language Translation Benchmark") as demo:
|
| 99 |
gr.Markdown("# AI Language Translation Benchmark")
|
| 100 |
-
gr.Markdown(
|
| 101 |
-
|
|
|
|
|
|
|
| 102 |
df = create_results_df(results)
|
|
|
|
| 103 |
bar_plot = create_model_comparison_plot(results)
|
| 104 |
scatter_plot = create_scatter_plot(results)
|
| 105 |
-
|
| 106 |
-
gr.DataFrame(value=
|
| 107 |
gr.Plot(value=bar_plot, label="Model Comparison")
|
|
|
|
| 108 |
gr.Plot(value=scatter_plot, label="Language Coverage")
|
| 109 |
|
| 110 |
-
demo.launch()
|
|
|
|
| 2 |
import json
|
| 3 |
import pandas as pd
|
| 4 |
import plotly.graph_objects as go
|
|
|
|
| 5 |
|
| 6 |
# Load and process results
|
| 7 |
with open("results.json") as f:
|
| 8 |
results = json.load(f)
|
| 9 |
|
| 10 |
+
|
| 11 |
def create_model_comparison_plot(results):
|
| 12 |
# Extract all unique models
|
| 13 |
models = set()
|
|
|
|
| 15 |
for score in lang["scores"]:
|
| 16 |
models.add(score["model"])
|
| 17 |
models = list(models)
|
| 18 |
+
|
| 19 |
# Create traces for each model
|
| 20 |
traces = []
|
| 21 |
for model in models:
|
| 22 |
x_vals = [] # languages
|
| 23 |
y_vals = [] # BLEU scores
|
| 24 |
+
|
| 25 |
for lang in results:
|
| 26 |
+
model_score = next(
|
| 27 |
+
(s["bleu"] for s in lang["scores"] if s["model"] == model), None
|
| 28 |
+
)
|
| 29 |
if model_score is not None:
|
| 30 |
x_vals.append(lang["language_name"])
|
| 31 |
y_vals.append(model_score)
|
| 32 |
+
|
| 33 |
+
traces.append(
|
| 34 |
+
go.Bar(
|
| 35 |
+
name=model.split("/")[-1],
|
| 36 |
+
x=x_vals,
|
| 37 |
+
y=y_vals,
|
| 38 |
+
)
|
| 39 |
+
)
|
| 40 |
+
|
| 41 |
fig = go.Figure(data=traces)
|
| 42 |
fig.update_layout(
|
| 43 |
title="BLEU Scores by Model and Language",
|
| 44 |
xaxis_title="Language",
|
| 45 |
yaxis_title="BLEU Score",
|
| 46 |
+
barmode="group",
|
| 47 |
+
height=500,
|
| 48 |
)
|
| 49 |
return fig
|
| 50 |
|
| 51 |
+
|
| 52 |
def create_scatter_plot(results):
|
| 53 |
fig = go.Figure()
|
| 54 |
+
|
| 55 |
x_vals = [lang["speakers"] / 1_000_000 for lang in results] # Convert to millions
|
| 56 |
y_vals = [lang["bleu"] for lang in results]
|
| 57 |
labels = [lang["language_name"] for lang in results]
|
| 58 |
+
|
| 59 |
+
fig.add_trace(
|
| 60 |
+
go.Scatter(
|
| 61 |
+
x=x_vals,
|
| 62 |
+
y=y_vals,
|
| 63 |
+
mode="markers+text",
|
| 64 |
+
text=labels,
|
| 65 |
+
textposition="top center",
|
| 66 |
+
hovertemplate="<b>%{text}</b><br>"
|
| 67 |
+
+ "Speakers: %{x:.1f}M<br>"
|
| 68 |
+
+ "BLEU Score: %{y:.3f}<extra></extra>",
|
| 69 |
+
)
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
fig.update_layout(
|
| 73 |
title="Language Coverage: Speakers vs BLEU Score",
|
| 74 |
xaxis_title="Number of Speakers (Millions)",
|
| 75 |
yaxis_title="Average BLEU Score",
|
| 76 |
height=500,
|
| 77 |
+
showlegend=False,
|
| 78 |
)
|
| 79 |
+
|
| 80 |
# Use log scale for x-axis since speaker numbers vary widely
|
| 81 |
fig.update_xaxes(type="log")
|
| 82 |
+
|
| 83 |
return fig
|
| 84 |
|
| 85 |
+
|
| 86 |
def create_results_df(results):
|
| 87 |
# Create a list to store flattened data
|
| 88 |
flat_data = []
|
| 89 |
+
|
| 90 |
for lang in results:
|
| 91 |
+
# Find the best model and its BLEU score
|
| 92 |
+
best_score = max(lang["scores"] or [{"bleu": None, "model": None}], key=lambda x: x["bleu"])
|
| 93 |
+
|
| 94 |
row = {
|
| 95 |
"Language": lang["language_name"],
|
| 96 |
"Speakers (M)": round(lang["speakers"] / 1_000_000, 1),
|
| 97 |
+
"Models Tested": len(lang["scores"]),
|
| 98 |
+
"Average BLEU": round(lang["bleu"], 3) if lang["bleu"] is not None else "N/A",
|
| 99 |
+
"Best Model": best_score["model"] if best_score["model"] is not None else "N/A",
|
| 100 |
+
"Best Model BLEU": round(best_score["bleu"], 3) if best_score["bleu"] is not None else "N/A",
|
| 101 |
}
|
| 102 |
+
flat_data.append(row)
|
| 103 |
+
|
| 104 |
+
return pd.DataFrame(flat_data)
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
def create_leaderboard_df(results):
|
| 108 |
+
# Sort languages by average BLEU to determine resource categories
|
| 109 |
+
langs_with_bleu = [lang for lang in results if lang["bleu"] is not None]
|
| 110 |
+
sorted_langs = sorted(langs_with_bleu, key=lambda x: x["bleu"], reverse=True)
|
| 111 |
+
n_langs = len(sorted_langs)
|
| 112 |
+
high_cutoff = n_langs // 4 # top 25%
|
| 113 |
+
low_cutoff = n_langs - n_langs // 4 # bottom 25%
|
| 114 |
+
|
| 115 |
+
# Create sets of languages for each category
|
| 116 |
+
high_resource = {lang["language_name"] for lang in sorted_langs[:high_cutoff]}
|
| 117 |
+
low_resource = {lang["language_name"] for lang in sorted_langs[low_cutoff:]}
|
| 118 |
+
|
| 119 |
+
# Get all model scores with categorization
|
| 120 |
+
model_scores = {}
|
| 121 |
+
for lang in results:
|
| 122 |
+
category = ("High-Resource" if lang["language_name"] in high_resource else
|
| 123 |
+
"Low-Resource" if lang["language_name"] in low_resource else
|
| 124 |
+
"Mid-Resource")
|
| 125 |
+
|
| 126 |
for score in lang["scores"]:
|
| 127 |
+
model_name = score["model"].split("/")[-1]
|
| 128 |
+
if model_name not in model_scores:
|
| 129 |
+
model_scores[model_name] = {
|
| 130 |
+
"High-Resource": [],
|
| 131 |
+
"Mid-Resource": [],
|
| 132 |
+
"Low-Resource": []
|
| 133 |
+
}
|
| 134 |
+
model_scores[model_name][category].append(score["bleu"])
|
| 135 |
+
|
| 136 |
+
# Calculate average scores and create DataFrame
|
| 137 |
+
leaderboard_data = []
|
| 138 |
+
for model, categories in model_scores.items():
|
| 139 |
+
# Calculate averages for each category
|
| 140 |
+
high_avg = round(sum(categories["High-Resource"]) / len(categories["High-Resource"]), 3) if categories["High-Resource"] else 0
|
| 141 |
+
mid_avg = round(sum(categories["Mid-Resource"]) / len(categories["Mid-Resource"]), 3) if categories["Mid-Resource"] else 0
|
| 142 |
+
low_avg = round(sum(categories["Low-Resource"]) / len(categories["Low-Resource"]), 3) if categories["Low-Resource"] else 0
|
| 143 |
|
| 144 |
+
# Calculate overall average
|
| 145 |
+
all_scores = (categories["High-Resource"] +
|
| 146 |
+
categories["Mid-Resource"] +
|
| 147 |
+
categories["Low-Resource"])
|
| 148 |
+
overall_avg = round(sum(all_scores) / len(all_scores), 3)
|
| 149 |
+
|
| 150 |
+
leaderboard_data.append({
|
| 151 |
+
"Model": model,
|
| 152 |
+
"Overall BLEU": overall_avg,
|
| 153 |
+
"High-Resource BLEU": high_avg,
|
| 154 |
+
"Mid-Resource BLEU": mid_avg,
|
| 155 |
+
"Low-Resource BLEU": low_avg,
|
| 156 |
+
"Languages Tested": len(all_scores),
|
| 157 |
+
})
|
| 158 |
|
| 159 |
+
# Sort by overall BLEU
|
| 160 |
+
df = pd.DataFrame(leaderboard_data)
|
| 161 |
+
df = df.sort_values("Overall BLEU", ascending=False)
|
| 162 |
+
|
| 163 |
+
# Add rank and medals
|
| 164 |
+
df["Rank"] = range(1, len(df) + 1)
|
| 165 |
+
df["Rank"] = df["Rank"].apply(
|
| 166 |
+
lambda x: "🥇" if x == 1 else "🥈" if x == 2 else "🥉" if x == 3 else str(x)
|
| 167 |
+
)
|
| 168 |
+
|
| 169 |
+
# Reorder columns
|
| 170 |
+
df = df[["Rank", "Model", "Overall BLEU", "High-Resource BLEU",
|
| 171 |
+
"Mid-Resource BLEU", "Low-Resource BLEU", "Languages Tested"]]
|
| 172 |
+
|
| 173 |
+
return df
|
| 174 |
+
|
| 175 |
|
| 176 |
# Create the visualization components
|
| 177 |
with gr.Blocks(title="AI Language Translation Benchmark") as demo:
|
| 178 |
gr.Markdown("# AI Language Translation Benchmark")
|
| 179 |
+
gr.Markdown(
|
| 180 |
+
"Comparing translation performance across different AI models and languages"
|
| 181 |
+
)
|
| 182 |
+
|
| 183 |
df = create_results_df(results)
|
| 184 |
+
leaderboard_df = create_leaderboard_df(results)
|
| 185 |
bar_plot = create_model_comparison_plot(results)
|
| 186 |
scatter_plot = create_scatter_plot(results)
|
| 187 |
+
|
| 188 |
+
gr.DataFrame(value=leaderboard_df, label="Model Leaderboard", show_search=False)
|
| 189 |
gr.Plot(value=bar_plot, label="Model Comparison")
|
| 190 |
+
gr.DataFrame(value=df, label="Language Results", show_search="search")
|
| 191 |
gr.Plot(value=scatter_plot, label="Language Coverage")
|
| 192 |
|
| 193 |
+
demo.launch()
|
evals.py
CHANGED
|
@@ -95,7 +95,7 @@ languages = pd.merge(benchmark_languages, languages, on="language_code", how="ou
|
|
| 95 |
languages = pd.merge(languages, script_names, on="script_code", how="left")
|
| 96 |
languages["in_benchmark"] = languages["in_benchmark"].fillna(False)
|
| 97 |
languages = languages.sort_values(by="speakers", ascending=False)
|
| 98 |
-
languages = languages.iloc[:
|
| 99 |
|
| 100 |
# sample languages to translate to
|
| 101 |
target_languages_NEW = languages[languages["in_benchmark"]].sample(
|
|
@@ -103,7 +103,7 @@ target_languages_NEW = languages[languages["in_benchmark"]].sample(
|
|
| 103 |
)
|
| 104 |
# sample languages to analyze with all models
|
| 105 |
detailed_languages = languages[languages["in_benchmark"]].sample(
|
| 106 |
-
n=
|
| 107 |
)
|
| 108 |
|
| 109 |
|
|
@@ -214,7 +214,7 @@ async def main():
|
|
| 214 |
"language_code": language.language_code,
|
| 215 |
"speakers": language.speakers if not pd.isna(language.speakers) else 0,
|
| 216 |
"scores": scores,
|
| 217 |
-
"bleu": mean([s["bleu"] for s in scores])
|
| 218 |
# "bert_score": mean([s["bert_score"] for s in scores]),
|
| 219 |
}
|
| 220 |
)
|
|
|
|
| 95 |
languages = pd.merge(languages, script_names, on="script_code", how="left")
|
| 96 |
languages["in_benchmark"] = languages["in_benchmark"].fillna(False)
|
| 97 |
languages = languages.sort_values(by="speakers", ascending=False)
|
| 98 |
+
languages = languages.iloc[:30]
|
| 99 |
|
| 100 |
# sample languages to translate to
|
| 101 |
target_languages_NEW = languages[languages["in_benchmark"]].sample(
|
|
|
|
| 103 |
)
|
| 104 |
# sample languages to analyze with all models
|
| 105 |
detailed_languages = languages[languages["in_benchmark"]].sample(
|
| 106 |
+
n=10, random_state=42
|
| 107 |
)
|
| 108 |
|
| 109 |
|
|
|
|
| 214 |
"language_code": language.language_code,
|
| 215 |
"speakers": language.speakers if not pd.isna(language.speakers) else 0,
|
| 216 |
"scores": scores,
|
| 217 |
+
"bleu": mean([s["bleu"] for s in scores]) if scores else None,
|
| 218 |
# "bert_score": mean([s["bert_score"] for s in scores]),
|
| 219 |
}
|
| 220 |
)
|
results.json
CHANGED
|
@@ -6,62 +6,42 @@
|
|
| 6 |
"scores": [
|
| 7 |
{
|
| 8 |
"model": "openai/gpt-4o-mini",
|
| 9 |
-
"bleu": 0.
|
| 10 |
},
|
| 11 |
{
|
| 12 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 13 |
-
"bleu": 0.
|
| 14 |
},
|
| 15 |
{
|
| 16 |
"model": "mistralai/mistral-small-24b-instruct-2501",
|
| 17 |
-
"bleu": 0.
|
| 18 |
},
|
| 19 |
{
|
| 20 |
"model": "google/gemini-2.0-flash-001",
|
| 21 |
-
"bleu": 0.
|
| 22 |
},
|
| 23 |
{
|
| 24 |
"model": "deepseek/deepseek-chat",
|
| 25 |
-
"bleu": 0.
|
| 26 |
},
|
| 27 |
{
|
| 28 |
"model": "microsoft/phi-4",
|
| 29 |
-
"bleu": 0.
|
| 30 |
}
|
| 31 |
],
|
| 32 |
-
"bleu": 0.
|
| 33 |
},
|
| 34 |
{
|
| 35 |
"language_name": "Mandarin Chinese",
|
| 36 |
"language_code": "cmn",
|
| 37 |
"speakers": 1074000000.0,
|
| 38 |
"scores": [
|
| 39 |
-
{
|
| 40 |
-
"model": "openai/gpt-4o-mini",
|
| 41 |
-
"bleu": 0.38427885971806375
|
| 42 |
-
},
|
| 43 |
{
|
| 44 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 45 |
-
"bleu": 0.
|
| 46 |
-
},
|
| 47 |
-
{
|
| 48 |
-
"model": "mistralai/mistral-small-24b-instruct-2501",
|
| 49 |
-
"bleu": 0.40933363203497697
|
| 50 |
-
},
|
| 51 |
-
{
|
| 52 |
-
"model": "google/gemini-2.0-flash-001",
|
| 53 |
-
"bleu": 0.4486368724887284
|
| 54 |
-
},
|
| 55 |
-
{
|
| 56 |
-
"model": "deepseek/deepseek-chat",
|
| 57 |
-
"bleu": 0.4354691779014211
|
| 58 |
-
},
|
| 59 |
-
{
|
| 60 |
-
"model": "microsoft/phi-4",
|
| 61 |
-
"bleu": 0.3597312915524714
|
| 62 |
}
|
| 63 |
],
|
| 64 |
-
"bleu": 0.
|
| 65 |
},
|
| 66 |
{
|
| 67 |
"language_name": "Spanish",
|
|
@@ -70,10 +50,10 @@
|
|
| 70 |
"scores": [
|
| 71 |
{
|
| 72 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 73 |
-
"bleu": 0.
|
| 74 |
}
|
| 75 |
],
|
| 76 |
-
"bleu": 0.
|
| 77 |
},
|
| 78 |
{
|
| 79 |
"language_name": "Hindi",
|
|
@@ -82,10 +62,10 @@
|
|
| 82 |
"scores": [
|
| 83 |
{
|
| 84 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 85 |
-
"bleu": 0.
|
| 86 |
}
|
| 87 |
],
|
| 88 |
-
"bleu": 0.
|
| 89 |
},
|
| 90 |
{
|
| 91 |
"language_name": "Bengali",
|
|
@@ -94,10 +74,10 @@
|
|
| 94 |
"scores": [
|
| 95 |
{
|
| 96 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 97 |
-
"bleu": 0.
|
| 98 |
}
|
| 99 |
],
|
| 100 |
-
"bleu": 0.
|
| 101 |
},
|
| 102 |
{
|
| 103 |
"language_name": "Portuguese",
|
|
@@ -106,10 +86,10 @@
|
|
| 106 |
"scores": [
|
| 107 |
{
|
| 108 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 109 |
-
"bleu": 0.
|
| 110 |
}
|
| 111 |
],
|
| 112 |
-
"bleu": 0.
|
| 113 |
},
|
| 114 |
{
|
| 115 |
"language_name": "French",
|
|
@@ -118,10 +98,10 @@
|
|
| 118 |
"scores": [
|
| 119 |
{
|
| 120 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 121 |
-
"bleu": 0.
|
| 122 |
}
|
| 123 |
],
|
| 124 |
-
"bleu": 0.
|
| 125 |
},
|
| 126 |
{
|
| 127 |
"language_name": "Indonesian",
|
|
@@ -130,10 +110,10 @@
|
|
| 130 |
"scores": [
|
| 131 |
{
|
| 132 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 133 |
-
"bleu": 0.
|
| 134 |
}
|
| 135 |
],
|
| 136 |
-
"bleu": 0.
|
| 137 |
},
|
| 138 |
{
|
| 139 |
"language_name": "Russian",
|
|
@@ -142,42 +122,62 @@
|
|
| 142 |
"scores": [
|
| 143 |
{
|
| 144 |
"model": "openai/gpt-4o-mini",
|
| 145 |
-
"bleu": 0.
|
| 146 |
},
|
| 147 |
{
|
| 148 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 149 |
-
"bleu": 0.
|
| 150 |
},
|
| 151 |
{
|
| 152 |
"model": "mistralai/mistral-small-24b-instruct-2501",
|
| 153 |
-
"bleu": 0.
|
| 154 |
},
|
| 155 |
{
|
| 156 |
"model": "google/gemini-2.0-flash-001",
|
| 157 |
-
"bleu": 0.
|
| 158 |
},
|
| 159 |
{
|
| 160 |
"model": "deepseek/deepseek-chat",
|
| 161 |
-
"bleu": 0.
|
| 162 |
},
|
| 163 |
{
|
| 164 |
"model": "microsoft/phi-4",
|
| 165 |
-
"bleu": 0.
|
| 166 |
}
|
| 167 |
],
|
| 168 |
-
"bleu": 0.
|
| 169 |
},
|
| 170 |
{
|
| 171 |
"language_name": "Japanese",
|
| 172 |
"language_code": "jpn",
|
| 173 |
"speakers": 128000000.0,
|
| 174 |
"scores": [
|
|
|
|
|
|
|
|
|
|
|
|
|
| 175 |
{
|
| 176 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 177 |
-
"bleu": 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
}
|
| 179 |
],
|
| 180 |
-
"bleu": 0.
|
| 181 |
},
|
| 182 |
{
|
| 183 |
"language_name": "Eastern Punjabi",
|
|
@@ -186,46 +186,106 @@
|
|
| 186 |
"scores": [
|
| 187 |
{
|
| 188 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 189 |
-
"bleu": 0.
|
| 190 |
}
|
| 191 |
],
|
| 192 |
-
"bleu": 0.
|
| 193 |
},
|
| 194 |
{
|
| 195 |
"language_name": "Standard German",
|
| 196 |
"language_code": "deu",
|
| 197 |
"speakers": 105000000.0,
|
| 198 |
"scores": [
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
{
|
| 200 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 201 |
-
"bleu": 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
}
|
| 203 |
],
|
| 204 |
-
"bleu": 0.
|
| 205 |
},
|
| 206 |
{
|
| 207 |
"language_name": "Egyptian Arabic",
|
| 208 |
"language_code": "arz",
|
| 209 |
"speakers": 100542400.0,
|
| 210 |
"scores": [
|
|
|
|
|
|
|
|
|
|
|
|
|
| 211 |
{
|
| 212 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 213 |
-
"bleu": 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 214 |
}
|
| 215 |
],
|
| 216 |
-
"bleu": 0.
|
| 217 |
},
|
| 218 |
{
|
| 219 |
"language_name": "Urdu",
|
| 220 |
"language_code": "urd",
|
| 221 |
"speakers": 94022900.0,
|
| 222 |
"scores": [
|
|
|
|
|
|
|
|
|
|
|
|
|
| 223 |
{
|
| 224 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 225 |
-
"bleu": 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 226 |
}
|
| 227 |
],
|
| 228 |
-
"bleu": 0.
|
| 229 |
},
|
| 230 |
{
|
| 231 |
"language_name": "Filipino",
|
|
@@ -234,109 +294,259 @@
|
|
| 234 |
"scores": [
|
| 235 |
{
|
| 236 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 237 |
-
"bleu": 0.
|
| 238 |
}
|
| 239 |
],
|
| 240 |
-
"bleu": 0.
|
| 241 |
},
|
| 242 |
{
|
| 243 |
"language_name": "Javanese",
|
| 244 |
"language_code": "jav",
|
| 245 |
"speakers": 84308740.0,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 246 |
"scores": [
|
| 247 |
{
|
| 248 |
"model": "openai/gpt-4o-mini",
|
| 249 |
-
"bleu": 0.
|
| 250 |
},
|
| 251 |
{
|
| 252 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 253 |
-
"bleu": 0.
|
| 254 |
},
|
| 255 |
{
|
| 256 |
"model": "mistralai/mistral-small-24b-instruct-2501",
|
| 257 |
-
"bleu": 0.
|
| 258 |
},
|
| 259 |
{
|
| 260 |
"model": "google/gemini-2.0-flash-001",
|
| 261 |
-
"bleu": 0.
|
| 262 |
},
|
| 263 |
{
|
| 264 |
"model": "deepseek/deepseek-chat",
|
| 265 |
-
"bleu": 0.
|
| 266 |
},
|
| 267 |
{
|
| 268 |
"model": "microsoft/phi-4",
|
| 269 |
-
"bleu": 0.
|
| 270 |
}
|
| 271 |
],
|
| 272 |
-
"bleu": 0.
|
| 273 |
},
|
| 274 |
{
|
| 275 |
-
"language_name": "
|
| 276 |
-
"language_code": "
|
| 277 |
-
"speakers":
|
| 278 |
"scores": [
|
| 279 |
{
|
| 280 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 281 |
-
"bleu": 0.
|
| 282 |
}
|
| 283 |
],
|
| 284 |
-
"bleu": 0.
|
| 285 |
},
|
| 286 |
{
|
| 287 |
-
"language_name": "
|
| 288 |
-
"language_code": "
|
| 289 |
-
"speakers":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 290 |
"scores": [
|
| 291 |
{
|
| 292 |
"model": "openai/gpt-4o-mini",
|
| 293 |
-
"bleu": 0.
|
| 294 |
},
|
| 295 |
{
|
| 296 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 297 |
-
"bleu": 0.
|
| 298 |
},
|
| 299 |
{
|
| 300 |
"model": "mistralai/mistral-small-24b-instruct-2501",
|
| 301 |
-
"bleu": 0.
|
| 302 |
},
|
| 303 |
{
|
| 304 |
"model": "google/gemini-2.0-flash-001",
|
| 305 |
-
"bleu": 0.
|
| 306 |
},
|
| 307 |
{
|
| 308 |
"model": "deepseek/deepseek-chat",
|
| 309 |
-
"bleu": 0.
|
| 310 |
},
|
| 311 |
{
|
| 312 |
"model": "microsoft/phi-4",
|
| 313 |
-
"bleu": 0.
|
| 314 |
}
|
| 315 |
],
|
| 316 |
-
"bleu": 0.
|
| 317 |
},
|
| 318 |
{
|
| 319 |
-
"language_name": "
|
| 320 |
-
"language_code": "
|
| 321 |
-
"speakers":
|
| 322 |
"scores": [
|
|
|
|
|
|
|
|
|
|
|
|
|
| 323 |
{
|
| 324 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 325 |
-
"bleu": 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 326 |
}
|
| 327 |
],
|
| 328 |
-
"bleu": 0.
|
| 329 |
},
|
| 330 |
{
|
| 331 |
-
"language_name": "
|
| 332 |
-
"language_code": "
|
| 333 |
-
"speakers":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 334 |
"scores": [
|
| 335 |
{
|
| 336 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 337 |
-
"bleu": 0.
|
| 338 |
}
|
| 339 |
],
|
| 340 |
-
"bleu": 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 341 |
}
|
| 342 |
]
|
|
|
|
| 6 |
"scores": [
|
| 7 |
{
|
| 8 |
"model": "openai/gpt-4o-mini",
|
| 9 |
+
"bleu": 0.47104084248165595
|
| 10 |
},
|
| 11 |
{
|
| 12 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 13 |
+
"bleu": 0.4207265890491719
|
| 14 |
},
|
| 15 |
{
|
| 16 |
"model": "mistralai/mistral-small-24b-instruct-2501",
|
| 17 |
+
"bleu": 0.4642719176436136
|
| 18 |
},
|
| 19 |
{
|
| 20 |
"model": "google/gemini-2.0-flash-001",
|
| 21 |
+
"bleu": 0.5237470882988915
|
| 22 |
},
|
| 23 |
{
|
| 24 |
"model": "deepseek/deepseek-chat",
|
| 25 |
+
"bleu": 0.516570670982587
|
| 26 |
},
|
| 27 |
{
|
| 28 |
"model": "microsoft/phi-4",
|
| 29 |
+
"bleu": 0.44668905281921456
|
| 30 |
}
|
| 31 |
],
|
| 32 |
+
"bleu": 0.47384102687918905
|
| 33 |
},
|
| 34 |
{
|
| 35 |
"language_name": "Mandarin Chinese",
|
| 36 |
"language_code": "cmn",
|
| 37 |
"speakers": 1074000000.0,
|
| 38 |
"scores": [
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
{
|
| 40 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 41 |
+
"bleu": 0.48254866511762295
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
}
|
| 43 |
],
|
| 44 |
+
"bleu": 0.48254866511762295
|
| 45 |
},
|
| 46 |
{
|
| 47 |
"language_name": "Spanish",
|
|
|
|
| 50 |
"scores": [
|
| 51 |
{
|
| 52 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 53 |
+
"bleu": 0.31606621368361204
|
| 54 |
}
|
| 55 |
],
|
| 56 |
+
"bleu": 0.31606621368361204
|
| 57 |
},
|
| 58 |
{
|
| 59 |
"language_name": "Hindi",
|
|
|
|
| 62 |
"scores": [
|
| 63 |
{
|
| 64 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 65 |
+
"bleu": 0.3273225856613046
|
| 66 |
}
|
| 67 |
],
|
| 68 |
+
"bleu": 0.3273225856613046
|
| 69 |
},
|
| 70 |
{
|
| 71 |
"language_name": "Bengali",
|
|
|
|
| 74 |
"scores": [
|
| 75 |
{
|
| 76 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 77 |
+
"bleu": 0.23110496173302814
|
| 78 |
}
|
| 79 |
],
|
| 80 |
+
"bleu": 0.23110496173302814
|
| 81 |
},
|
| 82 |
{
|
| 83 |
"language_name": "Portuguese",
|
|
|
|
| 86 |
"scores": [
|
| 87 |
{
|
| 88 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 89 |
+
"bleu": 0.35032125995743685
|
| 90 |
}
|
| 91 |
],
|
| 92 |
+
"bleu": 0.35032125995743685
|
| 93 |
},
|
| 94 |
{
|
| 95 |
"language_name": "French",
|
|
|
|
| 98 |
"scores": [
|
| 99 |
{
|
| 100 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 101 |
+
"bleu": 0.31625053573185663
|
| 102 |
}
|
| 103 |
],
|
| 104 |
+
"bleu": 0.31625053573185663
|
| 105 |
},
|
| 106 |
{
|
| 107 |
"language_name": "Indonesian",
|
|
|
|
| 110 |
"scores": [
|
| 111 |
{
|
| 112 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 113 |
+
"bleu": 0.3112185444311794
|
| 114 |
}
|
| 115 |
],
|
| 116 |
+
"bleu": 0.3112185444311794
|
| 117 |
},
|
| 118 |
{
|
| 119 |
"language_name": "Russian",
|
|
|
|
| 122 |
"scores": [
|
| 123 |
{
|
| 124 |
"model": "openai/gpt-4o-mini",
|
| 125 |
+
"bleu": 0.32615858913589074
|
| 126 |
},
|
| 127 |
{
|
| 128 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 129 |
+
"bleu": 0.3244999119385425
|
| 130 |
},
|
| 131 |
{
|
| 132 |
"model": "mistralai/mistral-small-24b-instruct-2501",
|
| 133 |
+
"bleu": 0.315801608032821
|
| 134 |
},
|
| 135 |
{
|
| 136 |
"model": "google/gemini-2.0-flash-001",
|
| 137 |
+
"bleu": 0.3683733679689521
|
| 138 |
},
|
| 139 |
{
|
| 140 |
"model": "deepseek/deepseek-chat",
|
| 141 |
+
"bleu": 0.35988734604889566
|
| 142 |
},
|
| 143 |
{
|
| 144 |
"model": "microsoft/phi-4",
|
| 145 |
+
"bleu": 0.31289371159965956
|
| 146 |
}
|
| 147 |
],
|
| 148 |
+
"bleu": 0.3346024224541269
|
| 149 |
},
|
| 150 |
{
|
| 151 |
"language_name": "Japanese",
|
| 152 |
"language_code": "jpn",
|
| 153 |
"speakers": 128000000.0,
|
| 154 |
"scores": [
|
| 155 |
+
{
|
| 156 |
+
"model": "openai/gpt-4o-mini",
|
| 157 |
+
"bleu": 0.28991739992953497
|
| 158 |
+
},
|
| 159 |
{
|
| 160 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 161 |
+
"bleu": 0.2675679907215641
|
| 162 |
+
},
|
| 163 |
+
{
|
| 164 |
+
"model": "mistralai/mistral-small-24b-instruct-2501",
|
| 165 |
+
"bleu": 0.21348802780641032
|
| 166 |
+
},
|
| 167 |
+
{
|
| 168 |
+
"model": "google/gemini-2.0-flash-001",
|
| 169 |
+
"bleu": 0.3345265427223546
|
| 170 |
+
},
|
| 171 |
+
{
|
| 172 |
+
"model": "deepseek/deepseek-chat",
|
| 173 |
+
"bleu": 0.3101203037558905
|
| 174 |
+
},
|
| 175 |
+
{
|
| 176 |
+
"model": "microsoft/phi-4",
|
| 177 |
+
"bleu": 0.2585222780278109
|
| 178 |
}
|
| 179 |
],
|
| 180 |
+
"bleu": 0.2790237571605942
|
| 181 |
},
|
| 182 |
{
|
| 183 |
"language_name": "Eastern Punjabi",
|
|
|
|
| 186 |
"scores": [
|
| 187 |
{
|
| 188 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 189 |
+
"bleu": 0.27325501919134315
|
| 190 |
}
|
| 191 |
],
|
| 192 |
+
"bleu": 0.27325501919134315
|
| 193 |
},
|
| 194 |
{
|
| 195 |
"language_name": "Standard German",
|
| 196 |
"language_code": "deu",
|
| 197 |
"speakers": 105000000.0,
|
| 198 |
"scores": [
|
| 199 |
+
{
|
| 200 |
+
"model": "openai/gpt-4o-mini",
|
| 201 |
+
"bleu": 0.39019323183176663
|
| 202 |
+
},
|
| 203 |
{
|
| 204 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 205 |
+
"bleu": 0.37266353070949576
|
| 206 |
+
},
|
| 207 |
+
{
|
| 208 |
+
"model": "mistralai/mistral-small-24b-instruct-2501",
|
| 209 |
+
"bleu": 0.3647632576435612
|
| 210 |
+
},
|
| 211 |
+
{
|
| 212 |
+
"model": "google/gemini-2.0-flash-001",
|
| 213 |
+
"bleu": 0.4466723425292597
|
| 214 |
+
},
|
| 215 |
+
{
|
| 216 |
+
"model": "deepseek/deepseek-chat",
|
| 217 |
+
"bleu": 0.4045496243095387
|
| 218 |
+
},
|
| 219 |
+
{
|
| 220 |
+
"model": "microsoft/phi-4",
|
| 221 |
+
"bleu": 0.36047992103881465
|
| 222 |
}
|
| 223 |
],
|
| 224 |
+
"bleu": 0.3898869846770727
|
| 225 |
},
|
| 226 |
{
|
| 227 |
"language_name": "Egyptian Arabic",
|
| 228 |
"language_code": "arz",
|
| 229 |
"speakers": 100542400.0,
|
| 230 |
"scores": [
|
| 231 |
+
{
|
| 232 |
+
"model": "openai/gpt-4o-mini",
|
| 233 |
+
"bleu": 0.2339779422333898
|
| 234 |
+
},
|
| 235 |
{
|
| 236 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 237 |
+
"bleu": 0.20475486619797384
|
| 238 |
+
},
|
| 239 |
+
{
|
| 240 |
+
"model": "mistralai/mistral-small-24b-instruct-2501",
|
| 241 |
+
"bleu": 0.20783660453505234
|
| 242 |
+
},
|
| 243 |
+
{
|
| 244 |
+
"model": "google/gemini-2.0-flash-001",
|
| 245 |
+
"bleu": 0.2840808045687292
|
| 246 |
+
},
|
| 247 |
+
{
|
| 248 |
+
"model": "deepseek/deepseek-chat",
|
| 249 |
+
"bleu": 0.2786287793608212
|
| 250 |
+
},
|
| 251 |
+
{
|
| 252 |
+
"model": "microsoft/phi-4",
|
| 253 |
+
"bleu": 0.19969813973959594
|
| 254 |
}
|
| 255 |
],
|
| 256 |
+
"bleu": 0.23482952277259375
|
| 257 |
},
|
| 258 |
{
|
| 259 |
"language_name": "Urdu",
|
| 260 |
"language_code": "urd",
|
| 261 |
"speakers": 94022900.0,
|
| 262 |
"scores": [
|
| 263 |
+
{
|
| 264 |
+
"model": "openai/gpt-4o-mini",
|
| 265 |
+
"bleu": 0.297325653414119
|
| 266 |
+
},
|
| 267 |
{
|
| 268 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 269 |
+
"bleu": 0.24593966310665433
|
| 270 |
+
},
|
| 271 |
+
{
|
| 272 |
+
"model": "mistralai/mistral-small-24b-instruct-2501",
|
| 273 |
+
"bleu": 0.21988755291389567
|
| 274 |
+
},
|
| 275 |
+
{
|
| 276 |
+
"model": "google/gemini-2.0-flash-001",
|
| 277 |
+
"bleu": 0.31796430998058983
|
| 278 |
+
},
|
| 279 |
+
{
|
| 280 |
+
"model": "deepseek/deepseek-chat",
|
| 281 |
+
"bleu": 0.3043614136242901
|
| 282 |
+
},
|
| 283 |
+
{
|
| 284 |
+
"model": "microsoft/phi-4",
|
| 285 |
+
"bleu": 0.2285337340113323
|
| 286 |
}
|
| 287 |
],
|
| 288 |
+
"bleu": 0.2690020545084802
|
| 289 |
},
|
| 290 |
{
|
| 291 |
"language_name": "Filipino",
|
|
|
|
| 294 |
"scores": [
|
| 295 |
{
|
| 296 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 297 |
+
"bleu": 0.33268969497468076
|
| 298 |
}
|
| 299 |
],
|
| 300 |
+
"bleu": 0.33268969497468076
|
| 301 |
},
|
| 302 |
{
|
| 303 |
"language_name": "Javanese",
|
| 304 |
"language_code": "jav",
|
| 305 |
"speakers": 84308740.0,
|
| 306 |
+
"scores": [
|
| 307 |
+
{
|
| 308 |
+
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 309 |
+
"bleu": 0.2528746866064681
|
| 310 |
+
}
|
| 311 |
+
],
|
| 312 |
+
"bleu": 0.2528746866064681
|
| 313 |
+
},
|
| 314 |
+
{
|
| 315 |
+
"language_name": "Marathi",
|
| 316 |
+
"language_code": "mar",
|
| 317 |
+
"speakers": 83100000.0,
|
| 318 |
+
"scores": [
|
| 319 |
+
{
|
| 320 |
+
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 321 |
+
"bleu": 0.24876051941895777
|
| 322 |
+
}
|
| 323 |
+
],
|
| 324 |
+
"bleu": 0.24876051941895777
|
| 325 |
+
},
|
| 326 |
+
{
|
| 327 |
+
"language_name": "Swahili",
|
| 328 |
+
"language_code": "swh",
|
| 329 |
+
"speakers": 82300000.0,
|
| 330 |
"scores": [
|
| 331 |
{
|
| 332 |
"model": "openai/gpt-4o-mini",
|
| 333 |
+
"bleu": 0.34863560100932933
|
| 334 |
},
|
| 335 |
{
|
| 336 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 337 |
+
"bleu": 0.30524292832054034
|
| 338 |
},
|
| 339 |
{
|
| 340 |
"model": "mistralai/mistral-small-24b-instruct-2501",
|
| 341 |
+
"bleu": 0.23580256234118713
|
| 342 |
},
|
| 343 |
{
|
| 344 |
"model": "google/gemini-2.0-flash-001",
|
| 345 |
+
"bleu": 0.3871437234807849
|
| 346 |
},
|
| 347 |
{
|
| 348 |
"model": "deepseek/deepseek-chat",
|
| 349 |
+
"bleu": 0.3476225063617937
|
| 350 |
},
|
| 351 |
{
|
| 352 |
"model": "microsoft/phi-4",
|
| 353 |
+
"bleu": 0.21803176063271826
|
| 354 |
}
|
| 355 |
],
|
| 356 |
+
"bleu": 0.3070798470243923
|
| 357 |
},
|
| 358 |
{
|
| 359 |
+
"language_name": "Turkish",
|
| 360 |
+
"language_code": "tur",
|
| 361 |
+
"speakers": 82231620.0,
|
| 362 |
"scores": [
|
| 363 |
{
|
| 364 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 365 |
+
"bleu": 0.29874140544434125
|
| 366 |
}
|
| 367 |
],
|
| 368 |
+
"bleu": 0.29874140544434125
|
| 369 |
},
|
| 370 |
{
|
| 371 |
+
"language_name": "Telugu",
|
| 372 |
+
"language_code": "tel",
|
| 373 |
+
"speakers": 82000000.0,
|
| 374 |
+
"scores": [
|
| 375 |
+
{
|
| 376 |
+
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 377 |
+
"bleu": 0.28869836899054496
|
| 378 |
+
}
|
| 379 |
+
],
|
| 380 |
+
"bleu": 0.28869836899054496
|
| 381 |
+
},
|
| 382 |
+
{
|
| 383 |
+
"language_name": "Wu Chinese",
|
| 384 |
+
"language_code": "wuu",
|
| 385 |
+
"speakers": 81400000.0,
|
| 386 |
+
"scores": [],
|
| 387 |
+
"bleu": null
|
| 388 |
+
},
|
| 389 |
+
{
|
| 390 |
+
"language_name": "Korean",
|
| 391 |
+
"language_code": "kor",
|
| 392 |
+
"speakers": 77300000.0,
|
| 393 |
+
"scores": [
|
| 394 |
+
{
|
| 395 |
+
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 396 |
+
"bleu": 0.2566453806044083
|
| 397 |
+
}
|
| 398 |
+
],
|
| 399 |
+
"bleu": 0.2566453806044083
|
| 400 |
+
},
|
| 401 |
+
{
|
| 402 |
+
"language_name": "Vietnamese",
|
| 403 |
+
"language_code": "vie",
|
| 404 |
+
"speakers": 76000000.0,
|
| 405 |
"scores": [
|
| 406 |
{
|
| 407 |
"model": "openai/gpt-4o-mini",
|
| 408 |
+
"bleu": 0.3104431723374164
|
| 409 |
},
|
| 410 |
{
|
| 411 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 412 |
+
"bleu": 0.3098478561790782
|
| 413 |
},
|
| 414 |
{
|
| 415 |
"model": "mistralai/mistral-small-24b-instruct-2501",
|
| 416 |
+
"bleu": 0.28074941515909896
|
| 417 |
},
|
| 418 |
{
|
| 419 |
"model": "google/gemini-2.0-flash-001",
|
| 420 |
+
"bleu": 0.37327273228460267
|
| 421 |
},
|
| 422 |
{
|
| 423 |
"model": "deepseek/deepseek-chat",
|
| 424 |
+
"bleu": 0.3487726531917602
|
| 425 |
},
|
| 426 |
{
|
| 427 |
"model": "microsoft/phi-4",
|
| 428 |
+
"bleu": 0.18355331419148843
|
| 429 |
}
|
| 430 |
],
|
| 431 |
+
"bleu": 0.3011065238905742
|
| 432 |
},
|
| 433 |
{
|
| 434 |
+
"language_name": "Tamil",
|
| 435 |
+
"language_code": "tam",
|
| 436 |
+
"speakers": 75000000.0,
|
| 437 |
"scores": [
|
| 438 |
+
{
|
| 439 |
+
"model": "openai/gpt-4o-mini",
|
| 440 |
+
"bleu": 0.24593649157372188
|
| 441 |
+
},
|
| 442 |
{
|
| 443 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 444 |
+
"bleu": 0.24009996232522382
|
| 445 |
+
},
|
| 446 |
+
{
|
| 447 |
+
"model": "mistralai/mistral-small-24b-instruct-2501",
|
| 448 |
+
"bleu": 0.16785828803139252
|
| 449 |
+
},
|
| 450 |
+
{
|
| 451 |
+
"model": "google/gemini-2.0-flash-001",
|
| 452 |
+
"bleu": 0.3411457686951495
|
| 453 |
+
},
|
| 454 |
+
{
|
| 455 |
+
"model": "deepseek/deepseek-chat",
|
| 456 |
+
"bleu": 0.2875340171253509
|
| 457 |
+
},
|
| 458 |
+
{
|
| 459 |
+
"model": "microsoft/phi-4",
|
| 460 |
+
"bleu": 0.12646276530642359
|
| 461 |
}
|
| 462 |
],
|
| 463 |
+
"bleu": 0.23483954884287706
|
| 464 |
},
|
| 465 |
{
|
| 466 |
+
"language_name": "Yue Chinese",
|
| 467 |
+
"language_code": "yue",
|
| 468 |
+
"speakers": 73100000.0,
|
| 469 |
+
"scores": [
|
| 470 |
+
{
|
| 471 |
+
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 472 |
+
"bleu": 0.2663995648378034
|
| 473 |
+
}
|
| 474 |
+
],
|
| 475 |
+
"bleu": 0.2663995648378034
|
| 476 |
+
},
|
| 477 |
+
{
|
| 478 |
+
"language_name": "Italian",
|
| 479 |
+
"language_code": "ita",
|
| 480 |
+
"speakers": 64819790.0,
|
| 481 |
"scores": [
|
| 482 |
{
|
| 483 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 484 |
+
"bleu": 0.3190660116366235
|
| 485 |
}
|
| 486 |
],
|
| 487 |
+
"bleu": 0.3190660116366235
|
| 488 |
+
},
|
| 489 |
+
{
|
| 490 |
+
"language_name": "Gujarati",
|
| 491 |
+
"language_code": "guj",
|
| 492 |
+
"speakers": 56400000.0,
|
| 493 |
+
"scores": [
|
| 494 |
+
{
|
| 495 |
+
"model": "openai/gpt-4o-mini",
|
| 496 |
+
"bleu": 0.25754571533357745
|
| 497 |
+
},
|
| 498 |
+
{
|
| 499 |
+
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 500 |
+
"bleu": 0.24145756515188838
|
| 501 |
+
},
|
| 502 |
+
{
|
| 503 |
+
"model": "mistralai/mistral-small-24b-instruct-2501",
|
| 504 |
+
"bleu": 0.20092063514315023
|
| 505 |
+
},
|
| 506 |
+
{
|
| 507 |
+
"model": "google/gemini-2.0-flash-001",
|
| 508 |
+
"bleu": 0.3664134239402827
|
| 509 |
+
},
|
| 510 |
+
{
|
| 511 |
+
"model": "deepseek/deepseek-chat",
|
| 512 |
+
"bleu": 0.2908883229704476
|
| 513 |
+
},
|
| 514 |
+
{
|
| 515 |
+
"model": "microsoft/phi-4",
|
| 516 |
+
"bleu": 0.19669824113063106
|
| 517 |
+
}
|
| 518 |
+
],
|
| 519 |
+
"bleu": 0.2589873172783296
|
| 520 |
+
},
|
| 521 |
+
{
|
| 522 |
+
"language_name": "Iranian Persian",
|
| 523 |
+
"language_code": "pes",
|
| 524 |
+
"speakers": 52800000.0,
|
| 525 |
+
"scores": [
|
| 526 |
+
{
|
| 527 |
+
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 528 |
+
"bleu": 0.28359916806993934
|
| 529 |
+
}
|
| 530 |
+
],
|
| 531 |
+
"bleu": 0.28359916806993934
|
| 532 |
+
},
|
| 533 |
+
{
|
| 534 |
+
"language_name": "Bhojpuri",
|
| 535 |
+
"language_code": "bho",
|
| 536 |
+
"speakers": 52200000.0,
|
| 537 |
+
"scores": [
|
| 538 |
+
{
|
| 539 |
+
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 540 |
+
"bleu": 0.24311504988281543
|
| 541 |
+
}
|
| 542 |
+
],
|
| 543 |
+
"bleu": 0.24311504988281543
|
| 544 |
+
},
|
| 545 |
+
{
|
| 546 |
+
"language_name": "Hakka Chinese",
|
| 547 |
+
"language_code": "hak",
|
| 548 |
+
"speakers": 48200000.0,
|
| 549 |
+
"scores": [],
|
| 550 |
+
"bleu": null
|
| 551 |
}
|
| 552 |
]
|