Spaces:
Running
Running
David Pomerenke
commited on
Commit
·
a32a92f
1
Parent(s):
a0679b4
Get popular models from OpenRouter
Browse files- evals/models.py +42 -4
evals/models.py
CHANGED
|
@@ -1,3 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from os import getenv
|
| 2 |
|
| 3 |
import pandas as pd
|
|
@@ -40,13 +44,33 @@ transcription_models = [
|
|
| 40 |
# "facebook/seamless-m4t-v2-large",
|
| 41 |
]
|
| 42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
load_dotenv()
|
| 44 |
client = AsyncOpenAI(
|
| 45 |
base_url="https://openrouter.ai/api/v1",
|
| 46 |
api_key=getenv("OPENROUTER_API_KEY"),
|
| 47 |
)
|
| 48 |
|
| 49 |
-
cache = Memory(location=".cache", verbose=0).cache
|
| 50 |
openrouter_rate_limit = AsyncLimiter(max_rate=20, time_period=1)
|
| 51 |
elevenlabs_rate_limit = AsyncLimiter(max_rate=2, time_period=1)
|
| 52 |
huggingface_rate_limit = AsyncLimiter(max_rate=5, time_period=1)
|
|
@@ -117,7 +141,10 @@ def get_hf_metadata(row):
|
|
| 117 |
"type": "Commercial",
|
| 118 |
"license": None,
|
| 119 |
}
|
| 120 |
-
|
|
|
|
|
|
|
|
|
|
| 121 |
if not id:
|
| 122 |
return empty
|
| 123 |
try:
|
|
@@ -126,7 +153,7 @@ def get_hf_metadata(row):
|
|
| 126 |
return {
|
| 127 |
"hf_id": info.id,
|
| 128 |
"creation_date": info.created_at,
|
| 129 |
-
"size": info.safetensors.total,
|
| 130 |
"type": "Open",
|
| 131 |
"license": license,
|
| 132 |
}
|
|
@@ -143,13 +170,24 @@ def get_cost(row):
|
|
| 143 |
return round(cost * 1_000_000, 2)
|
| 144 |
|
| 145 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
models = models.assign(
|
| 147 |
name=or_metadata.str["short_name"],
|
| 148 |
provider_name=or_metadata.str["name"].str.split(": ").str[0],
|
| 149 |
cost=or_metadata.apply(get_cost),
|
| 150 |
hf_id=hf_metadata.str["hf_id"],
|
| 151 |
-
creation_date=pd.to_datetime(hf_metadata.str["creation_date"]),
|
| 152 |
size=hf_metadata.str["size"],
|
| 153 |
type=hf_metadata.str["type"],
|
| 154 |
license=hf_metadata.str["license"],
|
|
|
|
| 155 |
)
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import re
|
| 3 |
+
from collections import defaultdict
|
| 4 |
+
from datetime import date
|
| 5 |
from os import getenv
|
| 6 |
|
| 7 |
import pandas as pd
|
|
|
|
| 44 |
# "facebook/seamless-m4t-v2-large",
|
| 45 |
]
|
| 46 |
|
| 47 |
+
cache = Memory(location=".cache", verbose=0).cache
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
@cache
|
| 51 |
+
def get_popular_models(date: date):
|
| 52 |
+
raw = get("https://openrouter.ai/rankings").text
|
| 53 |
+
data = re.search(r'{\\"data\\":(.*),\\"isPercentage\\"', raw).group(1)
|
| 54 |
+
data = json.loads(data.replace("\\", ""))
|
| 55 |
+
counts = defaultdict(int)
|
| 56 |
+
for day in data:
|
| 57 |
+
for model, count in day["ys"].items():
|
| 58 |
+
if model.startswith("openrouter") or model == "Others":
|
| 59 |
+
continue
|
| 60 |
+
counts[model.split(":")[0]] += count
|
| 61 |
+
counts = sorted(counts.items(), key=lambda x: x[1], reverse=True)
|
| 62 |
+
return [model for model, _ in counts]
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
pop_models = get_popular_models(date.today())
|
| 66 |
+
models += [m for m in pop_models if m not in models][:1]
|
| 67 |
+
|
| 68 |
load_dotenv()
|
| 69 |
client = AsyncOpenAI(
|
| 70 |
base_url="https://openrouter.ai/api/v1",
|
| 71 |
api_key=getenv("OPENROUTER_API_KEY"),
|
| 72 |
)
|
| 73 |
|
|
|
|
| 74 |
openrouter_rate_limit = AsyncLimiter(max_rate=20, time_period=1)
|
| 75 |
elevenlabs_rate_limit = AsyncLimiter(max_rate=2, time_period=1)
|
| 76 |
huggingface_rate_limit = AsyncLimiter(max_rate=5, time_period=1)
|
|
|
|
| 141 |
"type": "Commercial",
|
| 142 |
"license": None,
|
| 143 |
}
|
| 144 |
+
if not row:
|
| 145 |
+
return empty
|
| 146 |
+
id = row["hf_slug"] or row["slug"].split(":")[0]
|
| 147 |
+
print(id)
|
| 148 |
if not id:
|
| 149 |
return empty
|
| 150 |
try:
|
|
|
|
| 153 |
return {
|
| 154 |
"hf_id": info.id,
|
| 155 |
"creation_date": info.created_at,
|
| 156 |
+
"size": info.safetensors.total if info.safetensors else None,
|
| 157 |
"type": "Open",
|
| 158 |
"license": license,
|
| 159 |
}
|
|
|
|
| 170 |
return round(cost * 1_000_000, 2)
|
| 171 |
|
| 172 |
|
| 173 |
+
exists = or_metadata.apply(lambda x: x is not None)
|
| 174 |
+
models, or_metadata, hf_metadata = (
|
| 175 |
+
models[exists],
|
| 176 |
+
or_metadata[exists],
|
| 177 |
+
hf_metadata[exists],
|
| 178 |
+
)
|
| 179 |
+
creation_date_hf = pd.to_datetime(hf_metadata.str["creation_date"]).dt.date
|
| 180 |
+
creation_date_or = pd.to_datetime(
|
| 181 |
+
or_metadata.str["created_at"].str.split("T").str[0]
|
| 182 |
+
).dt.date
|
| 183 |
+
|
| 184 |
models = models.assign(
|
| 185 |
name=or_metadata.str["short_name"],
|
| 186 |
provider_name=or_metadata.str["name"].str.split(": ").str[0],
|
| 187 |
cost=or_metadata.apply(get_cost),
|
| 188 |
hf_id=hf_metadata.str["hf_id"],
|
|
|
|
| 189 |
size=hf_metadata.str["size"],
|
| 190 |
type=hf_metadata.str["type"],
|
| 191 |
license=hf_metadata.str["license"],
|
| 192 |
+
creation_date=creation_date_hf.combine_first(creation_date_or),
|
| 193 |
)
|