Spaces:
Running
Running
David Pomerenke
commited on
Commit
·
56081d8
1
Parent(s):
8190782
Parallelize everything, select most populous script
Browse files- evals.py +91 -86
- results.json +456 -64
evals.py
CHANGED
|
@@ -2,6 +2,7 @@ import asyncio
|
|
| 2 |
import json
|
| 3 |
import os
|
| 4 |
import re
|
|
|
|
| 5 |
from os import getenv
|
| 6 |
|
| 7 |
import evaluate
|
|
@@ -10,13 +11,12 @@ import requests
|
|
| 10 |
from aiolimiter import AsyncLimiter
|
| 11 |
from dotenv import load_dotenv
|
| 12 |
from joblib.memory import Memory
|
|
|
|
|
|
|
| 13 |
from openai import AsyncOpenAI
|
|
|
|
| 14 |
from tqdm.asyncio import tqdm_asyncio
|
| 15 |
from transformers import NllbTokenizer
|
| 16 |
-
from datetime import date
|
| 17 |
-
from requests import get
|
| 18 |
-
from language_data.population_data import LANGUAGE_SPEAKING_POPULATION
|
| 19 |
-
from langcodes import standardize_tag, Language
|
| 20 |
|
| 21 |
# config
|
| 22 |
models = [
|
|
@@ -40,17 +40,11 @@ client = AsyncOpenAI(
|
|
| 40 |
)
|
| 41 |
cache = Memory(location=".cache", verbose=0).cache
|
| 42 |
bleu = evaluate.load("bleu")
|
| 43 |
-
bertscore = evaluate.load("bertscore")
|
| 44 |
tokenizer = NllbTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
|
| 45 |
rate_limit = AsyncLimiter(max_rate=20, time_period=1)
|
| 46 |
|
| 47 |
|
| 48 |
-
def reorder(language_name):
|
| 49 |
-
if "," in language_name and "(" not in language_name:
|
| 50 |
-
return language_name.split(",")[1] + " " + language_name.split(",")[0]
|
| 51 |
-
return language_name
|
| 52 |
-
|
| 53 |
-
|
| 54 |
# load general language data
|
| 55 |
languages = {
|
| 56 |
lang: pop
|
|
@@ -58,7 +52,9 @@ languages = {
|
|
| 58 |
if not re.match(r".*-[A-Z]{2}$", lang)
|
| 59 |
}
|
| 60 |
languages = pd.DataFrame(list(languages.items()), columns=["bcp_47", "speakers"])
|
| 61 |
-
languages["
|
|
|
|
|
|
|
| 62 |
|
| 63 |
# load script codes and names
|
| 64 |
scripts = pd.read_csv("data/ScriptCodes.csv").rename(
|
|
@@ -70,15 +66,26 @@ def script_name(iso15924):
|
|
| 70 |
return scripts[scripts["iso15924"] == iso15924]["script_name"].values[0]
|
| 71 |
|
| 72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
# load benchmark languages and scripts
|
| 74 |
benchmark_dir = "data/floresp-v2.0-rc.3/dev"
|
| 75 |
benchmark_languages = pd.DataFrame(
|
| 76 |
-
[f.split(".")[1]
|
| 77 |
-
columns=["
|
| 78 |
)
|
| 79 |
-
benchmark_languages["bcp_47"] = benchmark_languages.apply(
|
| 80 |
-
lambda
|
| 81 |
-
axis=1,
|
| 82 |
)
|
| 83 |
# ignore script (language is language)
|
| 84 |
benchmark_languages["bcp_47"] = benchmark_languages["bcp_47"].apply(
|
|
@@ -86,7 +93,7 @@ benchmark_languages["bcp_47"] = benchmark_languages["bcp_47"].apply(
|
|
| 86 |
)
|
| 87 |
benchmark_languages = (
|
| 88 |
benchmark_languages.groupby("bcp_47")
|
| 89 |
-
.agg({"
|
| 90 |
.reset_index()
|
| 91 |
)
|
| 92 |
|
|
@@ -123,14 +130,14 @@ languages = pd.merge(
|
|
| 123 |
languages["in_benchmark"] = languages["bcp_47"].isin(benchmark_languages["bcp_47"])
|
| 124 |
|
| 125 |
languages = languages.sort_values(by="speakers", ascending=False)
|
| 126 |
-
languages = languages.iloc[:
|
| 127 |
|
| 128 |
# sample languages to translate to
|
| 129 |
target_languages = languages[languages["in_benchmark"]].sample(
|
| 130 |
n=n_sentences, weights="speakers", replace=True, random_state=42
|
| 131 |
)
|
| 132 |
# sample languages to analyze with all models
|
| 133 |
-
detailed_languages = languages[languages["in_benchmark"]].sample(n=
|
| 134 |
|
| 135 |
|
| 136 |
# utils
|
|
@@ -158,93 +165,91 @@ async def complete(**kwargs):
|
|
| 158 |
return response
|
| 159 |
|
| 160 |
|
| 161 |
-
|
| 162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
reply = await complete(
|
| 164 |
model=model,
|
| 165 |
messages=[
|
| 166 |
{
|
| 167 |
"role": "user",
|
| 168 |
-
"content": f"Translate the following text to the {target_language.
|
| 169 |
}
|
| 170 |
],
|
| 171 |
temperature=0,
|
| 172 |
max_tokens=1024,
|
| 173 |
)
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
|
| 180 |
|
| 181 |
-
def
|
| 182 |
-
return
|
| 183 |
-
f"{benchmark_dir}/dev.{language.iso639_3}_{language.iso15924}"
|
| 184 |
-
).readlines()
|
| 185 |
|
| 186 |
|
| 187 |
# evaluation!
|
| 188 |
async def main():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 189 |
results = []
|
| 190 |
-
for language in
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
translate(
|
| 202 |
-
model,
|
| 203 |
-
language,
|
| 204 |
-
sentence,
|
| 205 |
-
)
|
| 206 |
-
for sentence, language in zip(
|
| 207 |
-
original_sentences, target_languages.itertuples()
|
| 208 |
-
)
|
| 209 |
-
]
|
| 210 |
-
predictions = await tqdm_asyncio.gather(
|
| 211 |
-
*predictions,
|
| 212 |
-
miniters=1,
|
| 213 |
-
desc=f"{language.name} {model.split('/')[0]}",
|
| 214 |
-
)
|
| 215 |
-
target_sentences = [
|
| 216 |
-
load_sentences(lang)[i]
|
| 217 |
-
for i, lang in enumerate(target_languages.itertuples())
|
| 218 |
-
]
|
| 219 |
-
metrics_bleu = bleu.compute(
|
| 220 |
-
predictions=predictions,
|
| 221 |
-
references=target_sentences,
|
| 222 |
-
tokenizer=tokenizer.tokenize,
|
| 223 |
-
)
|
| 224 |
-
# metrics_bert = bertscore.compute(
|
| 225 |
-
# predictions=predictions,
|
| 226 |
-
# references=target_sentences,
|
| 227 |
-
# model_type="distilbert-base-uncased",
|
| 228 |
-
# )
|
| 229 |
-
scores.append(
|
| 230 |
{
|
| 231 |
"model": model,
|
| 232 |
-
"bleu":
|
| 233 |
-
# "bert_score": mean(metrics_bert["f1"]),
|
| 234 |
}
|
| 235 |
)
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
with open("results.json", "w") as f:
|
| 249 |
json.dump(results, f, indent=2, ensure_ascii=False)
|
| 250 |
|
|
|
|
| 2 |
import json
|
| 3 |
import os
|
| 4 |
import re
|
| 5 |
+
from datetime import date
|
| 6 |
from os import getenv
|
| 7 |
|
| 8 |
import evaluate
|
|
|
|
| 11 |
from aiolimiter import AsyncLimiter
|
| 12 |
from dotenv import load_dotenv
|
| 13 |
from joblib.memory import Memory
|
| 14 |
+
from langcodes import Language, standardize_tag
|
| 15 |
+
from language_data.population_data import LANGUAGE_SPEAKING_POPULATION
|
| 16 |
from openai import AsyncOpenAI
|
| 17 |
+
from requests import get
|
| 18 |
from tqdm.asyncio import tqdm_asyncio
|
| 19 |
from transformers import NllbTokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
# config
|
| 22 |
models = [
|
|
|
|
| 40 |
)
|
| 41 |
cache = Memory(location=".cache", verbose=0).cache
|
| 42 |
bleu = evaluate.load("bleu")
|
| 43 |
+
# bertscore = evaluate.load("bertscore")
|
| 44 |
tokenizer = NllbTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
|
| 45 |
rate_limit = AsyncLimiter(max_rate=20, time_period=1)
|
| 46 |
|
| 47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
# load general language data
|
| 49 |
languages = {
|
| 50 |
lang: pop
|
|
|
|
| 52 |
if not re.match(r".*-[A-Z]{2}$", lang)
|
| 53 |
}
|
| 54 |
languages = pd.DataFrame(list(languages.items()), columns=["bcp_47", "speakers"])
|
| 55 |
+
languages["language_name"] = languages["bcp_47"].apply(
|
| 56 |
+
lambda x: Language.get(x).display_name()
|
| 57 |
+
)
|
| 58 |
|
| 59 |
# load script codes and names
|
| 60 |
scripts = pd.read_csv("data/ScriptCodes.csv").rename(
|
|
|
|
| 66 |
return scripts[scripts["iso15924"] == iso15924]["script_name"].values[0]
|
| 67 |
|
| 68 |
|
| 69 |
+
def aggregate_flores_paths(flores_paths):
|
| 70 |
+
# takes a list of paths from the same language but different scripts
|
| 71 |
+
# returns the one with the largest writing population
|
| 72 |
+
if len(flores_paths) == 1:
|
| 73 |
+
return flores_paths.values[0]
|
| 74 |
+
populations = [
|
| 75 |
+
Language.get(standardize_tag(x, macro=True)).writing_population()
|
| 76 |
+
for x in flores_paths.values
|
| 77 |
+
]
|
| 78 |
+
return flores_paths.values[populations.index(max(populations))]
|
| 79 |
+
|
| 80 |
+
|
| 81 |
# load benchmark languages and scripts
|
| 82 |
benchmark_dir = "data/floresp-v2.0-rc.3/dev"
|
| 83 |
benchmark_languages = pd.DataFrame(
|
| 84 |
+
[f.split(".")[1] for f in os.listdir(benchmark_dir)],
|
| 85 |
+
columns=["flores_path"],
|
| 86 |
)
|
| 87 |
+
benchmark_languages["bcp_47"] = benchmark_languages["flores_path"].apply(
|
| 88 |
+
lambda x: standardize_tag(x, macro=True),
|
|
|
|
| 89 |
)
|
| 90 |
# ignore script (language is language)
|
| 91 |
benchmark_languages["bcp_47"] = benchmark_languages["bcp_47"].apply(
|
|
|
|
| 93 |
)
|
| 94 |
benchmark_languages = (
|
| 95 |
benchmark_languages.groupby("bcp_47")
|
| 96 |
+
.agg({"flores_path": aggregate_flores_paths})
|
| 97 |
.reset_index()
|
| 98 |
)
|
| 99 |
|
|
|
|
| 130 |
languages["in_benchmark"] = languages["bcp_47"].isin(benchmark_languages["bcp_47"])
|
| 131 |
|
| 132 |
languages = languages.sort_values(by="speakers", ascending=False)
|
| 133 |
+
languages = languages.iloc[:30]
|
| 134 |
|
| 135 |
# sample languages to translate to
|
| 136 |
target_languages = languages[languages["in_benchmark"]].sample(
|
| 137 |
n=n_sentences, weights="speakers", replace=True, random_state=42
|
| 138 |
)
|
| 139 |
# sample languages to analyze with all models
|
| 140 |
+
detailed_languages = languages[languages["in_benchmark"]].sample(n=10, random_state=42)
|
| 141 |
|
| 142 |
|
| 143 |
# utils
|
|
|
|
| 165 |
return response
|
| 166 |
|
| 167 |
|
| 168 |
+
def load_sentences(language):
|
| 169 |
+
return open(f"{benchmark_dir}/dev.{language.flores_path}").readlines()
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
@cache
|
| 173 |
+
async def translate_and_evaluate(model, original_language_bcp_47, sentence_nr):
|
| 174 |
+
original_language = languages[languages["bcp_47"] == original_language_bcp_47].iloc[
|
| 175 |
+
0
|
| 176 |
+
]
|
| 177 |
+
target_language = target_languages.iloc[sentence_nr]
|
| 178 |
+
original_sentence = load_sentences(original_language)[sentence_nr].strip()
|
| 179 |
+
target_sentence = load_sentences(target_language)[sentence_nr].strip()
|
| 180 |
+
script = script_name(target_language.flores_path.split("_")[1])
|
| 181 |
reply = await complete(
|
| 182 |
model=model,
|
| 183 |
messages=[
|
| 184 |
{
|
| 185 |
"role": "user",
|
| 186 |
+
"content": f"Translate the following text to the {target_language.language_name} language; use the {script} script; reply only with the translation:\n\n{original_sentence}",
|
| 187 |
}
|
| 188 |
],
|
| 189 |
temperature=0,
|
| 190 |
max_tokens=1024,
|
| 191 |
)
|
| 192 |
+
prediction = reply.choices[0].message.content.strip()
|
| 193 |
+
score = bleu.compute(
|
| 194 |
+
predictions=[prediction],
|
| 195 |
+
references=[target_sentence],
|
| 196 |
+
tokenizer=tokenizer.tokenize,
|
| 197 |
+
)
|
| 198 |
+
return {
|
| 199 |
+
"model": model,
|
| 200 |
+
"bcp_47": original_language["bcp_47"],
|
| 201 |
+
"bleu": score["bleu"],
|
| 202 |
+
"sentence_nr": sentence_nr,
|
| 203 |
+
}
|
| 204 |
|
| 205 |
|
| 206 |
+
def mean(lst):
|
| 207 |
+
return sum(lst) / len(lst) if lst else 0
|
|
|
|
|
|
|
| 208 |
|
| 209 |
|
| 210 |
# evaluation!
|
| 211 |
async def main():
|
| 212 |
+
scores = [
|
| 213 |
+
translate_and_evaluate(model, original_language.bcp_47, i)
|
| 214 |
+
for i in range(n_sentences)
|
| 215 |
+
for original_language in languages.itertuples()
|
| 216 |
+
for model in models
|
| 217 |
+
if original_language.in_benchmark
|
| 218 |
+
and (
|
| 219 |
+
model == fast_model
|
| 220 |
+
or original_language.bcp_47 in detailed_languages.bcp_47.values
|
| 221 |
+
)
|
| 222 |
+
]
|
| 223 |
+
scores = await tqdm_asyncio.gather(*scores, miniters=1)
|
| 224 |
results = []
|
| 225 |
+
for language in languages.itertuples():
|
| 226 |
+
results_for_language = []
|
| 227 |
+
for model in models:
|
| 228 |
+
results_for_model = [
|
| 229 |
+
score
|
| 230 |
+
for score in scores
|
| 231 |
+
if score["bcp_47"] == language.bcp_47 and score["model"] == model
|
| 232 |
+
]
|
| 233 |
+
if results_for_model:
|
| 234 |
+
bleu = mean([s["bleu"] for s in results_for_model])
|
| 235 |
+
results_for_language.append(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 236 |
{
|
| 237 |
"model": model,
|
| 238 |
+
"bleu": bleu,
|
|
|
|
| 239 |
}
|
| 240 |
)
|
| 241 |
+
if results_for_language:
|
| 242 |
+
results.append(
|
| 243 |
+
{
|
| 244 |
+
"language_name": language.language_name,
|
| 245 |
+
"bcp_47": language.bcp_47,
|
| 246 |
+
"speakers": language.speakers,
|
| 247 |
+
"scores": results_for_language,
|
| 248 |
+
"bleu": mean([s["bleu"] for s in results_for_language]),
|
| 249 |
+
"commonvoice_hours": language.commonvoice_hours,
|
| 250 |
+
"commonvoice_locale": language.commonvoice_locale,
|
| 251 |
+
}
|
| 252 |
+
)
|
| 253 |
with open("results.json", "w") as f:
|
| 254 |
json.dump(results, f, indent=2, ensure_ascii=False)
|
| 255 |
|
results.json
CHANGED
|
@@ -3,49 +3,49 @@
|
|
| 3 |
"language_name": "English",
|
| 4 |
"bcp_47": "en",
|
| 5 |
"speakers": 1636485840,
|
| 6 |
-
"scores": [
|
| 7 |
-
{
|
| 8 |
-
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 9 |
-
"bleu": 0.4931825583688982
|
| 10 |
-
}
|
| 11 |
-
],
|
| 12 |
-
"bleu": 0.4931825583688982,
|
| 13 |
-
"commonvoice_hours": 2649.0,
|
| 14 |
-
"commonvoice_locale": "en"
|
| 15 |
-
},
|
| 16 |
-
{
|
| 17 |
-
"language_name": "Chinese",
|
| 18 |
-
"bcp_47": "zh",
|
| 19 |
-
"speakers": 1304678914,
|
| 20 |
"scores": [
|
| 21 |
{
|
| 22 |
"model": "openai/gpt-4o-mini",
|
| 23 |
-
"bleu": 0.
|
| 24 |
},
|
| 25 |
{
|
| 26 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 27 |
-
"bleu": 0.
|
| 28 |
},
|
| 29 |
{
|
| 30 |
"model": "mistralai/mistral-small-24b-instruct-2501",
|
| 31 |
-
"bleu": 0.
|
| 32 |
},
|
| 33 |
{
|
| 34 |
"model": "google/gemini-2.0-flash-001",
|
| 35 |
-
"bleu": 0.
|
| 36 |
},
|
| 37 |
{
|
| 38 |
"model": "deepseek/deepseek-chat",
|
| 39 |
-
"bleu": 0.
|
| 40 |
},
|
| 41 |
{
|
| 42 |
"model": "microsoft/phi-4",
|
| 43 |
-
"bleu": 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
}
|
| 45 |
],
|
| 46 |
-
"bleu": 0.
|
| 47 |
"commonvoice_hours": 422.0,
|
| 48 |
-
"commonvoice_locale": "zh-
|
| 49 |
},
|
| 50 |
{
|
| 51 |
"language_name": "Hindi",
|
|
@@ -54,12 +54,12 @@
|
|
| 54 |
"scores": [
|
| 55 |
{
|
| 56 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 57 |
-
"bleu": 0.
|
| 58 |
}
|
| 59 |
],
|
| 60 |
-
"bleu": 0.
|
| 61 |
"commonvoice_hours": 16.0,
|
| 62 |
-
"commonvoice_locale": "hi
|
| 63 |
},
|
| 64 |
{
|
| 65 |
"language_name": "Spanish",
|
|
@@ -68,10 +68,10 @@
|
|
| 68 |
"scores": [
|
| 69 |
{
|
| 70 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 71 |
-
"bleu": 0.
|
| 72 |
}
|
| 73 |
],
|
| 74 |
-
"bleu": 0.
|
| 75 |
"commonvoice_hours": 446.0,
|
| 76 |
"commonvoice_locale": "es"
|
| 77 |
},
|
|
@@ -82,10 +82,10 @@
|
|
| 82 |
"scores": [
|
| 83 |
{
|
| 84 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 85 |
-
"bleu": 0.
|
| 86 |
}
|
| 87 |
],
|
| 88 |
-
"bleu": 0.
|
| 89 |
"commonvoice_hours": 91.0,
|
| 90 |
"commonvoice_locale": "ar"
|
| 91 |
},
|
|
@@ -94,32 +94,12 @@
|
|
| 94 |
"bcp_47": "ur",
|
| 95 |
"speakers": 290790290,
|
| 96 |
"scores": [
|
| 97 |
-
{
|
| 98 |
-
"model": "openai/gpt-4o-mini",
|
| 99 |
-
"bleu": 0.3223557428811336
|
| 100 |
-
},
|
| 101 |
{
|
| 102 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 103 |
-
"bleu": 0.
|
| 104 |
-
},
|
| 105 |
-
{
|
| 106 |
-
"model": "mistralai/mistral-small-24b-instruct-2501",
|
| 107 |
-
"bleu": 0.30361668093990973
|
| 108 |
-
},
|
| 109 |
-
{
|
| 110 |
-
"model": "google/gemini-2.0-flash-001",
|
| 111 |
-
"bleu": 0.38811035932918286
|
| 112 |
-
},
|
| 113 |
-
{
|
| 114 |
-
"model": "deepseek/deepseek-chat",
|
| 115 |
-
"bleu": 0.33221997814253806
|
| 116 |
-
},
|
| 117 |
-
{
|
| 118 |
-
"model": "microsoft/phi-4",
|
| 119 |
-
"bleu": 0.2541447606474814
|
| 120 |
}
|
| 121 |
],
|
| 122 |
-
"bleu": 0.
|
| 123 |
"commonvoice_hours": 76.0,
|
| 124 |
"commonvoice_locale": "ur"
|
| 125 |
},
|
|
@@ -130,10 +110,10 @@
|
|
| 130 |
"scores": [
|
| 131 |
{
|
| 132 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 133 |
-
"bleu": 0.
|
| 134 |
}
|
| 135 |
],
|
| 136 |
-
"bleu": 0.
|
| 137 |
"commonvoice_hours": 1051.0,
|
| 138 |
"commonvoice_locale": "fr"
|
| 139 |
},
|
|
@@ -144,10 +124,10 @@
|
|
| 144 |
"scores": [
|
| 145 |
{
|
| 146 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 147 |
-
"bleu": 0.
|
| 148 |
}
|
| 149 |
],
|
| 150 |
-
"bleu": 0.
|
| 151 |
"commonvoice_hours": 49.0,
|
| 152 |
"commonvoice_locale": "bn"
|
| 153 |
},
|
|
@@ -158,30 +138,30 @@
|
|
| 158 |
"scores": [
|
| 159 |
{
|
| 160 |
"model": "openai/gpt-4o-mini",
|
| 161 |
-
"bleu": 0.
|
| 162 |
},
|
| 163 |
{
|
| 164 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 165 |
-
"bleu": 0.
|
| 166 |
},
|
| 167 |
{
|
| 168 |
"model": "mistralai/mistral-small-24b-instruct-2501",
|
| 169 |
-
"bleu": 0.
|
| 170 |
},
|
| 171 |
{
|
| 172 |
"model": "google/gemini-2.0-flash-001",
|
| 173 |
-
"bleu": 0.
|
| 174 |
},
|
| 175 |
{
|
| 176 |
"model": "deepseek/deepseek-chat",
|
| 177 |
-
"bleu": 0.
|
| 178 |
},
|
| 179 |
{
|
| 180 |
"model": "microsoft/phi-4",
|
| 181 |
-
"bleu": 0.
|
| 182 |
}
|
| 183 |
],
|
| 184 |
-
"bleu": 0.
|
| 185 |
"commonvoice_hours": 176.0,
|
| 186 |
"commonvoice_locale": "pt"
|
| 187 |
},
|
|
@@ -190,13 +170,425 @@
|
|
| 190 |
"bcp_47": "pa",
|
| 191 |
"speakers": 203571210,
|
| 192 |
"scores": [
|
|
|
|
|
|
|
|
|
|
|
|
|
| 193 |
{
|
| 194 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 195 |
-
"bleu": 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
}
|
| 197 |
],
|
| 198 |
-
"bleu": 0.
|
| 199 |
"commonvoice_hours": 2.3,
|
| 200 |
"commonvoice_locale": "pa-IN"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 201 |
}
|
| 202 |
]
|
|
|
|
| 3 |
"language_name": "English",
|
| 4 |
"bcp_47": "en",
|
| 5 |
"speakers": 1636485840,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
"scores": [
|
| 7 |
{
|
| 8 |
"model": "openai/gpt-4o-mini",
|
| 9 |
+
"bleu": 0.5292544231540742
|
| 10 |
},
|
| 11 |
{
|
| 12 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 13 |
+
"bleu": 0.465648126623753
|
| 14 |
},
|
| 15 |
{
|
| 16 |
"model": "mistralai/mistral-small-24b-instruct-2501",
|
| 17 |
+
"bleu": 0.478174166015779
|
| 18 |
},
|
| 19 |
{
|
| 20 |
"model": "google/gemini-2.0-flash-001",
|
| 21 |
+
"bleu": 0.5266708610727185
|
| 22 |
},
|
| 23 |
{
|
| 24 |
"model": "deepseek/deepseek-chat",
|
| 25 |
+
"bleu": 0.5549134525314846
|
| 26 |
},
|
| 27 |
{
|
| 28 |
"model": "microsoft/phi-4",
|
| 29 |
+
"bleu": 0.4668163276973811
|
| 30 |
+
}
|
| 31 |
+
],
|
| 32 |
+
"bleu": 0.5035795595158651,
|
| 33 |
+
"commonvoice_hours": 2649.0,
|
| 34 |
+
"commonvoice_locale": "en"
|
| 35 |
+
},
|
| 36 |
+
{
|
| 37 |
+
"language_name": "Chinese",
|
| 38 |
+
"bcp_47": "zh",
|
| 39 |
+
"speakers": 1304678914,
|
| 40 |
+
"scores": [
|
| 41 |
+
{
|
| 42 |
+
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 43 |
+
"bleu": 0.35763875438716014
|
| 44 |
}
|
| 45 |
],
|
| 46 |
+
"bleu": 0.35763875438716014,
|
| 47 |
"commonvoice_hours": 422.0,
|
| 48 |
+
"commonvoice_locale": "zh-HK"
|
| 49 |
},
|
| 50 |
{
|
| 51 |
"language_name": "Hindi",
|
|
|
|
| 54 |
"scores": [
|
| 55 |
{
|
| 56 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 57 |
+
"bleu": 0.33760351976648345
|
| 58 |
}
|
| 59 |
],
|
| 60 |
+
"bleu": 0.33760351976648345,
|
| 61 |
"commonvoice_hours": 16.0,
|
| 62 |
+
"commonvoice_locale": "hi"
|
| 63 |
},
|
| 64 |
{
|
| 65 |
"language_name": "Spanish",
|
|
|
|
| 68 |
"scores": [
|
| 69 |
{
|
| 70 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 71 |
+
"bleu": 0.3600460831160618
|
| 72 |
}
|
| 73 |
],
|
| 74 |
+
"bleu": 0.3600460831160618,
|
| 75 |
"commonvoice_hours": 446.0,
|
| 76 |
"commonvoice_locale": "es"
|
| 77 |
},
|
|
|
|
| 82 |
"scores": [
|
| 83 |
{
|
| 84 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 85 |
+
"bleu": 0.3046598747480405
|
| 86 |
}
|
| 87 |
],
|
| 88 |
+
"bleu": 0.3046598747480405,
|
| 89 |
"commonvoice_hours": 91.0,
|
| 90 |
"commonvoice_locale": "ar"
|
| 91 |
},
|
|
|
|
| 94 |
"bcp_47": "ur",
|
| 95 |
"speakers": 290790290,
|
| 96 |
"scores": [
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
{
|
| 98 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 99 |
+
"bleu": 0.331647033312127
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
}
|
| 101 |
],
|
| 102 |
+
"bleu": 0.331647033312127,
|
| 103 |
"commonvoice_hours": 76.0,
|
| 104 |
"commonvoice_locale": "ur"
|
| 105 |
},
|
|
|
|
| 110 |
"scores": [
|
| 111 |
{
|
| 112 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 113 |
+
"bleu": 0.3141809404018014
|
| 114 |
}
|
| 115 |
],
|
| 116 |
+
"bleu": 0.3141809404018014,
|
| 117 |
"commonvoice_hours": 1051.0,
|
| 118 |
"commonvoice_locale": "fr"
|
| 119 |
},
|
|
|
|
| 124 |
"scores": [
|
| 125 |
{
|
| 126 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 127 |
+
"bleu": 0.27472181972977344
|
| 128 |
}
|
| 129 |
],
|
| 130 |
+
"bleu": 0.27472181972977344,
|
| 131 |
"commonvoice_hours": 49.0,
|
| 132 |
"commonvoice_locale": "bn"
|
| 133 |
},
|
|
|
|
| 138 |
"scores": [
|
| 139 |
{
|
| 140 |
"model": "openai/gpt-4o-mini",
|
| 141 |
+
"bleu": 0.36418677020025814
|
| 142 |
},
|
| 143 |
{
|
| 144 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 145 |
+
"bleu": 0.36847793827413045
|
| 146 |
},
|
| 147 |
{
|
| 148 |
"model": "mistralai/mistral-small-24b-instruct-2501",
|
| 149 |
+
"bleu": 0.33146858114564615
|
| 150 |
},
|
| 151 |
{
|
| 152 |
"model": "google/gemini-2.0-flash-001",
|
| 153 |
+
"bleu": 0.3685111782334586
|
| 154 |
},
|
| 155 |
{
|
| 156 |
"model": "deepseek/deepseek-chat",
|
| 157 |
+
"bleu": 0.41976380092637283
|
| 158 |
},
|
| 159 |
{
|
| 160 |
"model": "microsoft/phi-4",
|
| 161 |
+
"bleu": 0.35431476252948624
|
| 162 |
}
|
| 163 |
],
|
| 164 |
+
"bleu": 0.367787171884892,
|
| 165 |
"commonvoice_hours": 176.0,
|
| 166 |
"commonvoice_locale": "pt"
|
| 167 |
},
|
|
|
|
| 170 |
"bcp_47": "pa",
|
| 171 |
"speakers": 203571210,
|
| 172 |
"scores": [
|
| 173 |
+
{
|
| 174 |
+
"model": "openai/gpt-4o-mini",
|
| 175 |
+
"bleu": 0.29479385926490154
|
| 176 |
+
},
|
| 177 |
{
|
| 178 |
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 179 |
+
"bleu": 0.34372813238670347
|
| 180 |
+
},
|
| 181 |
+
{
|
| 182 |
+
"model": "mistralai/mistral-small-24b-instruct-2501",
|
| 183 |
+
"bleu": 0.24553184949811938
|
| 184 |
+
},
|
| 185 |
+
{
|
| 186 |
+
"model": "google/gemini-2.0-flash-001",
|
| 187 |
+
"bleu": 0.3934178960662497
|
| 188 |
+
},
|
| 189 |
+
{
|
| 190 |
+
"model": "deepseek/deepseek-chat",
|
| 191 |
+
"bleu": 0.3489400123993954
|
| 192 |
+
},
|
| 193 |
+
{
|
| 194 |
+
"model": "microsoft/phi-4",
|
| 195 |
+
"bleu": 0.26926813301032654
|
| 196 |
}
|
| 197 |
],
|
| 198 |
+
"bleu": 0.31594664710428266,
|
| 199 |
"commonvoice_hours": 2.3,
|
| 200 |
"commonvoice_locale": "pa-IN"
|
| 201 |
+
},
|
| 202 |
+
{
|
| 203 |
+
"language_name": "Russian",
|
| 204 |
+
"bcp_47": "ru",
|
| 205 |
+
"speakers": 195841151,
|
| 206 |
+
"scores": [
|
| 207 |
+
{
|
| 208 |
+
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 209 |
+
"bleu": 0.2920291935463745
|
| 210 |
+
}
|
| 211 |
+
],
|
| 212 |
+
"bleu": 0.2920291935463745,
|
| 213 |
+
"commonvoice_hours": 241.0,
|
| 214 |
+
"commonvoice_locale": "ru"
|
| 215 |
+
},
|
| 216 |
+
{
|
| 217 |
+
"language_name": "Swahili",
|
| 218 |
+
"bcp_47": "sw",
|
| 219 |
+
"speakers": 171610296,
|
| 220 |
+
"scores": [
|
| 221 |
+
{
|
| 222 |
+
"model": "openai/gpt-4o-mini",
|
| 223 |
+
"bleu": 0.3240516590412694
|
| 224 |
+
},
|
| 225 |
+
{
|
| 226 |
+
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 227 |
+
"bleu": 0.3021494866906426
|
| 228 |
+
},
|
| 229 |
+
{
|
| 230 |
+
"model": "mistralai/mistral-small-24b-instruct-2501",
|
| 231 |
+
"bleu": 0.21392015063903014
|
| 232 |
+
},
|
| 233 |
+
{
|
| 234 |
+
"model": "google/gemini-2.0-flash-001",
|
| 235 |
+
"bleu": 0.39351510575974585
|
| 236 |
+
},
|
| 237 |
+
{
|
| 238 |
+
"model": "deepseek/deepseek-chat",
|
| 239 |
+
"bleu": 0.32036034973159405
|
| 240 |
+
},
|
| 241 |
+
{
|
| 242 |
+
"model": "microsoft/phi-4",
|
| 243 |
+
"bleu": 0.2572750657835761
|
| 244 |
+
}
|
| 245 |
+
],
|
| 246 |
+
"bleu": 0.3018786362743097,
|
| 247 |
+
"commonvoice_hours": 411.0,
|
| 248 |
+
"commonvoice_locale": "sw"
|
| 249 |
+
},
|
| 250 |
+
{
|
| 251 |
+
"language_name": "Indonesian",
|
| 252 |
+
"bcp_47": "id",
|
| 253 |
+
"speakers": 171207687,
|
| 254 |
+
"scores": [
|
| 255 |
+
{
|
| 256 |
+
"model": "openai/gpt-4o-mini",
|
| 257 |
+
"bleu": 0.31923635687963403
|
| 258 |
+
},
|
| 259 |
+
{
|
| 260 |
+
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 261 |
+
"bleu": 0.32764790212460226
|
| 262 |
+
},
|
| 263 |
+
{
|
| 264 |
+
"model": "mistralai/mistral-small-24b-instruct-2501",
|
| 265 |
+
"bleu": 0.2387340248344293
|
| 266 |
+
},
|
| 267 |
+
{
|
| 268 |
+
"model": "google/gemini-2.0-flash-001",
|
| 269 |
+
"bleu": 0.36831341439353155
|
| 270 |
+
},
|
| 271 |
+
{
|
| 272 |
+
"model": "deepseek/deepseek-chat",
|
| 273 |
+
"bleu": 0.3614031163582736
|
| 274 |
+
},
|
| 275 |
+
{
|
| 276 |
+
"model": "microsoft/phi-4",
|
| 277 |
+
"bleu": 0.2526105547535859
|
| 278 |
+
}
|
| 279 |
+
],
|
| 280 |
+
"bleu": 0.31132422822400946,
|
| 281 |
+
"commonvoice_hours": 33.0,
|
| 282 |
+
"commonvoice_locale": "id"
|
| 283 |
+
},
|
| 284 |
+
{
|
| 285 |
+
"language_name": "German",
|
| 286 |
+
"bcp_47": "de",
|
| 287 |
+
"speakers": 136350226,
|
| 288 |
+
"scores": [
|
| 289 |
+
{
|
| 290 |
+
"model": "openai/gpt-4o-mini",
|
| 291 |
+
"bleu": 0.39299196408709347
|
| 292 |
+
},
|
| 293 |
+
{
|
| 294 |
+
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 295 |
+
"bleu": 0.3886659265736507
|
| 296 |
+
},
|
| 297 |
+
{
|
| 298 |
+
"model": "mistralai/mistral-small-24b-instruct-2501",
|
| 299 |
+
"bleu": 0.35731041330816654
|
| 300 |
+
},
|
| 301 |
+
{
|
| 302 |
+
"model": "google/gemini-2.0-flash-001",
|
| 303 |
+
"bleu": 0.46630655663486287
|
| 304 |
+
},
|
| 305 |
+
{
|
| 306 |
+
"model": "deepseek/deepseek-chat",
|
| 307 |
+
"bleu": 0.4373279553229372
|
| 308 |
+
},
|
| 309 |
+
{
|
| 310 |
+
"model": "microsoft/phi-4",
|
| 311 |
+
"bleu": 0.353010712972096
|
| 312 |
+
}
|
| 313 |
+
],
|
| 314 |
+
"bleu": 0.3992689214831344,
|
| 315 |
+
"commonvoice_hours": 1357.0,
|
| 316 |
+
"commonvoice_locale": "de"
|
| 317 |
+
},
|
| 318 |
+
{
|
| 319 |
+
"language_name": "Japanese",
|
| 320 |
+
"bcp_47": "ja",
|
| 321 |
+
"speakers": 119729026,
|
| 322 |
+
"scores": [
|
| 323 |
+
{
|
| 324 |
+
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 325 |
+
"bleu": 0.2954810072264808
|
| 326 |
+
}
|
| 327 |
+
],
|
| 328 |
+
"bleu": 0.2954810072264808,
|
| 329 |
+
"commonvoice_hours": 222.0,
|
| 330 |
+
"commonvoice_locale": "ja"
|
| 331 |
+
},
|
| 332 |
+
{
|
| 333 |
+
"language_name": "Telugu",
|
| 334 |
+
"bcp_47": "te",
|
| 335 |
+
"speakers": 95478480,
|
| 336 |
+
"scores": [
|
| 337 |
+
{
|
| 338 |
+
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 339 |
+
"bleu": 0.37949545228579734
|
| 340 |
+
}
|
| 341 |
+
],
|
| 342 |
+
"bleu": 0.37949545228579734,
|
| 343 |
+
"commonvoice_hours": 0.3,
|
| 344 |
+
"commonvoice_locale": "te"
|
| 345 |
+
},
|
| 346 |
+
{
|
| 347 |
+
"language_name": "Marathi",
|
| 348 |
+
"bcp_47": "mr",
|
| 349 |
+
"speakers": 92826300,
|
| 350 |
+
"scores": [
|
| 351 |
+
{
|
| 352 |
+
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 353 |
+
"bleu": 0.2852384896861461
|
| 354 |
+
}
|
| 355 |
+
],
|
| 356 |
+
"bleu": 0.2852384896861461,
|
| 357 |
+
"commonvoice_hours": 20.0,
|
| 358 |
+
"commonvoice_locale": "mr"
|
| 359 |
+
},
|
| 360 |
+
{
|
| 361 |
+
"language_name": "Javanese",
|
| 362 |
+
"bcp_47": "jv",
|
| 363 |
+
"speakers": 91180665,
|
| 364 |
+
"scores": [
|
| 365 |
+
{
|
| 366 |
+
"model": "openai/gpt-4o-mini",
|
| 367 |
+
"bleu": 0.2755399920693052
|
| 368 |
+
},
|
| 369 |
+
{
|
| 370 |
+
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 371 |
+
"bleu": 0.2494035065095152
|
| 372 |
+
},
|
| 373 |
+
{
|
| 374 |
+
"model": "mistralai/mistral-small-24b-instruct-2501",
|
| 375 |
+
"bleu": 0.1266725662438766
|
| 376 |
+
},
|
| 377 |
+
{
|
| 378 |
+
"model": "google/gemini-2.0-flash-001",
|
| 379 |
+
"bleu": 0.35614761567604236
|
| 380 |
+
},
|
| 381 |
+
{
|
| 382 |
+
"model": "deepseek/deepseek-chat",
|
| 383 |
+
"bleu": 0.29069945440951733
|
| 384 |
+
},
|
| 385 |
+
{
|
| 386 |
+
"model": "microsoft/phi-4",
|
| 387 |
+
"bleu": 0.20468330413608699
|
| 388 |
+
}
|
| 389 |
+
],
|
| 390 |
+
"bleu": 0.2505244065073906,
|
| 391 |
+
"commonvoice_hours": 0.0,
|
| 392 |
+
"commonvoice_locale": "jv"
|
| 393 |
+
},
|
| 394 |
+
{
|
| 395 |
+
"language_name": "Vietnamese",
|
| 396 |
+
"bcp_47": "vi",
|
| 397 |
+
"speakers": 86222962,
|
| 398 |
+
"scores": [
|
| 399 |
+
{
|
| 400 |
+
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 401 |
+
"bleu": 0.2956750563565745
|
| 402 |
+
}
|
| 403 |
+
],
|
| 404 |
+
"bleu": 0.2956750563565745,
|
| 405 |
+
"commonvoice_hours": 5.9,
|
| 406 |
+
"commonvoice_locale": "vi"
|
| 407 |
+
},
|
| 408 |
+
{
|
| 409 |
+
"language_name": "Tamil",
|
| 410 |
+
"bcp_47": "ta",
|
| 411 |
+
"speakers": 85616159,
|
| 412 |
+
"scores": [
|
| 413 |
+
{
|
| 414 |
+
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 415 |
+
"bleu": 0.27547489589987734
|
| 416 |
+
}
|
| 417 |
+
],
|
| 418 |
+
"bleu": 0.27547489589987734,
|
| 419 |
+
"commonvoice_hours": 234.0,
|
| 420 |
+
"commonvoice_locale": "ta"
|
| 421 |
+
},
|
| 422 |
+
{
|
| 423 |
+
"language_name": "Persian",
|
| 424 |
+
"bcp_47": "fa",
|
| 425 |
+
"speakers": 84710459,
|
| 426 |
+
"scores": [
|
| 427 |
+
{
|
| 428 |
+
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 429 |
+
"bleu": 0.2858012364771329
|
| 430 |
+
}
|
| 431 |
+
],
|
| 432 |
+
"bleu": 0.2858012364771329,
|
| 433 |
+
"commonvoice_hours": 370.0,
|
| 434 |
+
"commonvoice_locale": "fa"
|
| 435 |
+
},
|
| 436 |
+
{
|
| 437 |
+
"language_name": "Turkish",
|
| 438 |
+
"bcp_47": "tr",
|
| 439 |
+
"speakers": 80360704,
|
| 440 |
+
"scores": [
|
| 441 |
+
{
|
| 442 |
+
"model": "openai/gpt-4o-mini",
|
| 443 |
+
"bleu": 0.32005697883543305
|
| 444 |
+
},
|
| 445 |
+
{
|
| 446 |
+
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 447 |
+
"bleu": 0.3128582218784996
|
| 448 |
+
},
|
| 449 |
+
{
|
| 450 |
+
"model": "mistralai/mistral-small-24b-instruct-2501",
|
| 451 |
+
"bleu": 0.26166377989267786
|
| 452 |
+
},
|
| 453 |
+
{
|
| 454 |
+
"model": "google/gemini-2.0-flash-001",
|
| 455 |
+
"bleu": 0.3488811534537982
|
| 456 |
+
},
|
| 457 |
+
{
|
| 458 |
+
"model": "deepseek/deepseek-chat",
|
| 459 |
+
"bleu": 0.352126761953689
|
| 460 |
+
},
|
| 461 |
+
{
|
| 462 |
+
"model": "microsoft/phi-4",
|
| 463 |
+
"bleu": 0.22855630110633351
|
| 464 |
+
}
|
| 465 |
+
],
|
| 466 |
+
"bleu": 0.30402386618673855,
|
| 467 |
+
"commonvoice_hours": 127.0,
|
| 468 |
+
"commonvoice_locale": "tr"
|
| 469 |
+
},
|
| 470 |
+
{
|
| 471 |
+
"language_name": "Cantonese",
|
| 472 |
+
"bcp_47": "yue",
|
| 473 |
+
"speakers": 79654759,
|
| 474 |
+
"scores": [
|
| 475 |
+
{
|
| 476 |
+
"model": "openai/gpt-4o-mini",
|
| 477 |
+
"bleu": 0.25523473174207373
|
| 478 |
+
},
|
| 479 |
+
{
|
| 480 |
+
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 481 |
+
"bleu": 0.2901127503841879
|
| 482 |
+
},
|
| 483 |
+
{
|
| 484 |
+
"model": "mistralai/mistral-small-24b-instruct-2501",
|
| 485 |
+
"bleu": 0.23880603698191288
|
| 486 |
+
},
|
| 487 |
+
{
|
| 488 |
+
"model": "google/gemini-2.0-flash-001",
|
| 489 |
+
"bleu": 0.33330775674699475
|
| 490 |
+
},
|
| 491 |
+
{
|
| 492 |
+
"model": "deepseek/deepseek-chat",
|
| 493 |
+
"bleu": 0.30942219437451896
|
| 494 |
+
},
|
| 495 |
+
{
|
| 496 |
+
"model": "microsoft/phi-4",
|
| 497 |
+
"bleu": 0.25167599008414604
|
| 498 |
+
}
|
| 499 |
+
],
|
| 500 |
+
"bleu": 0.27975991005230577,
|
| 501 |
+
"commonvoice_hours": 203.0,
|
| 502 |
+
"commonvoice_locale": "yue"
|
| 503 |
+
},
|
| 504 |
+
{
|
| 505 |
+
"language_name": "Korean",
|
| 506 |
+
"bcp_47": "ko",
|
| 507 |
+
"speakers": 78357046,
|
| 508 |
+
"scores": [
|
| 509 |
+
{
|
| 510 |
+
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 511 |
+
"bleu": 0.24501349273295708
|
| 512 |
+
}
|
| 513 |
+
],
|
| 514 |
+
"bleu": 0.24501349273295708,
|
| 515 |
+
"commonvoice_hours": 1.7,
|
| 516 |
+
"commonvoice_locale": "ko"
|
| 517 |
+
},
|
| 518 |
+
{
|
| 519 |
+
"language_name": "Italian",
|
| 520 |
+
"bcp_47": "it",
|
| 521 |
+
"speakers": 70247060,
|
| 522 |
+
"scores": [
|
| 523 |
+
{
|
| 524 |
+
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 525 |
+
"bleu": 0.3273249067267197
|
| 526 |
+
}
|
| 527 |
+
],
|
| 528 |
+
"bleu": 0.3273249067267197,
|
| 529 |
+
"commonvoice_hours": 362.0,
|
| 530 |
+
"commonvoice_locale": "it"
|
| 531 |
+
},
|
| 532 |
+
{
|
| 533 |
+
"language_name": "Filipino",
|
| 534 |
+
"bcp_47": "fil",
|
| 535 |
+
"speakers": 67471096,
|
| 536 |
+
"scores": [
|
| 537 |
+
{
|
| 538 |
+
"model": "openai/gpt-4o-mini",
|
| 539 |
+
"bleu": 0.35950288667055635
|
| 540 |
+
},
|
| 541 |
+
{
|
| 542 |
+
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 543 |
+
"bleu": 0.3458571802193247
|
| 544 |
+
},
|
| 545 |
+
{
|
| 546 |
+
"model": "mistralai/mistral-small-24b-instruct-2501",
|
| 547 |
+
"bleu": 0.2769096553598123
|
| 548 |
+
},
|
| 549 |
+
{
|
| 550 |
+
"model": "google/gemini-2.0-flash-001",
|
| 551 |
+
"bleu": 0.4030081046637165
|
| 552 |
+
},
|
| 553 |
+
{
|
| 554 |
+
"model": "deepseek/deepseek-chat",
|
| 555 |
+
"bleu": 0.3712699611966998
|
| 556 |
+
},
|
| 557 |
+
{
|
| 558 |
+
"model": "microsoft/phi-4",
|
| 559 |
+
"bleu": 0.25550756070033753
|
| 560 |
+
}
|
| 561 |
+
],
|
| 562 |
+
"bleu": 0.3353425581350746,
|
| 563 |
+
"commonvoice_hours": 0.0,
|
| 564 |
+
"commonvoice_locale": "tl"
|
| 565 |
+
},
|
| 566 |
+
{
|
| 567 |
+
"language_name": "Egyptian Arabic",
|
| 568 |
+
"bcp_47": "arz",
|
| 569 |
+
"speakers": 66639360,
|
| 570 |
+
"scores": [
|
| 571 |
+
{
|
| 572 |
+
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 573 |
+
"bleu": 0.23431638822117362
|
| 574 |
+
}
|
| 575 |
+
],
|
| 576 |
+
"bleu": 0.23431638822117362,
|
| 577 |
+
"commonvoice_hours": NaN,
|
| 578 |
+
"commonvoice_locale": NaN
|
| 579 |
+
},
|
| 580 |
+
{
|
| 581 |
+
"language_name": "Gujarati",
|
| 582 |
+
"bcp_47": "gu",
|
| 583 |
+
"speakers": 61721799,
|
| 584 |
+
"scores": [
|
| 585 |
+
{
|
| 586 |
+
"model": "meta-llama/llama-3.3-70b-instruct",
|
| 587 |
+
"bleu": 0.27834507803114356
|
| 588 |
+
}
|
| 589 |
+
],
|
| 590 |
+
"bleu": 0.27834507803114356,
|
| 591 |
+
"commonvoice_hours": 0.0,
|
| 592 |
+
"commonvoice_locale": "gu-IN"
|
| 593 |
}
|
| 594 |
]
|