Spaces:
Running
Running
Upload from GitHub Actions: update and fixed rendering issues
Browse files
notes/system-architecture-diagram.md
CHANGED
|
@@ -7,27 +7,25 @@ This diagram shows the complete data flow from model discovery through evaluatio
|
|
| 7 |
```mermaid
|
| 8 |
flowchart TD
|
| 9 |
%% Model Sources
|
| 10 |
-
A1["important_models<br/>Static Curated List"] --> D[load_models]
|
| 11 |
-
A2["get_historical_popular_models<br/>Web Scraping - Top 20"] --> D
|
| 12 |
-
A3["get_current_popular_models<br/>Web Scraping - Top 10"] --> D
|
| 13 |
A4["blocklist<br/>Exclusions"] --> D
|
| 14 |
|
| 15 |
%% Model Processing
|
| 16 |
-
D --> |"Combine & Dedupe"| E["Dynamic Model List<br
|
| 17 |
E --> |get_or_metadata| F["OpenRouter API<br/>Model Metadata"]
|
| 18 |
F --> |get_hf_metadata| G["HuggingFace API<br/>Model Details"]
|
| 19 |
G --> H["Enriched Model DataFrame"]
|
| 20 |
H --> |Save| I[models.json]
|
| 21 |
|
| 22 |
%% Model Validation & Cost Filtering
|
| 23 |
-
H --> |"Validate Models<br/>Check API Availability"| H1["Valid Models Only<br/>Cost β€ $
|
| 24 |
-
H1 -->
|
| 25 |
|
| 26 |
%% Language Data
|
| 27 |
-
J["languages.py<br/>BCP-47 + Population"] --> K["
|
| 28 |
|
| 29 |
%% Task Registry with Unified Prompting
|
| 30 |
-
L["tasks.py<br/>7 Evaluation Tasks"] --> M["Task Functions<br/>Unified English Zero-Shot"]
|
| 31 |
M --> M1["translation_from/to<br/>BLEU + ChrF"]
|
| 32 |
M --> M2["classification<br/>Accuracy"]
|
| 33 |
M --> M3["mmlu<br/>Accuracy"]
|
|
@@ -39,43 +37,45 @@ flowchart TD
|
|
| 39 |
subgraph OTF [On-the-fly Dataset Translation]
|
| 40 |
direction LR
|
| 41 |
DS_raw["Raw English Dataset<br/>"] --> Google_Translate["Google Translate API"]
|
| 42 |
-
Google_Translate --> DS_translated["Translated Dataset<br/>
|
| 43 |
-
DS_native["Native Dataset<br/>
|
| 44 |
end
|
| 45 |
|
| 46 |
%% Evaluation Pipeline
|
| 47 |
-
H2 --> |"models ID"| N["main.py / main_gcs.py<br/>evaluate"]
|
| 48 |
-
K --> |"languages bcp_47"| N
|
| 49 |
L --> |"tasks.items"| N
|
| 50 |
-
N --> |"Filter by model.tasks"| O["Valid Combinations<br/>Model Γ Language Γ Task"]
|
| 51 |
-
O --> |"10 samples each"| P["Evaluation Execution<br/>Batch Processing"]
|
| 52 |
|
| 53 |
%% Task Execution with Origin Tracking
|
| 54 |
P --> Q1[translate_and_evaluate<br/>Origin: 'human']
|
| 55 |
P --> Q2[classify_and_evaluate<br/>Origin: 'human']
|
| 56 |
-
P --> Q3[mmlu_and_evaluate<br/>Origin: 'human'
|
| 57 |
P --> Q4[arc_and_evaluate<br/>Origin: 'human'/'machine']
|
| 58 |
-
P --> Q5[truthfulqa_and_evaluate<br/>Origin: 'human'
|
| 59 |
P --> Q6[mgsm_and_evaluate<br/>Origin: 'human'/'machine']
|
| 60 |
|
| 61 |
%% API Calls with Error Handling
|
| 62 |
-
Q1 --> |"complete() API<br/>Rate Limiting"| R["OpenRouter<br/>Model Inference"]
|
| 63 |
-
Q2 --> |"complete() API<br/>Rate Limiting"| R
|
| 64 |
-
Q3 --> |"complete() API<br/>Rate Limiting"| R
|
| 65 |
-
Q4 --> |"complete() API<br/>Rate Limiting"| R
|
| 66 |
-
Q5 --> |"complete() API<br/>Rate Limiting"| R
|
| 67 |
-
Q6 --> |"complete() API<br/>Rate Limiting"| R
|
| 68 |
|
| 69 |
%% Results Processing with Origin Aggregation
|
| 70 |
-
R --> |Scores| S["Result Aggregation<br/>Mean by model+lang+task+origin"]
|
| 71 |
-
S --> |Save| T[results.json]
|
| 72 |
|
| 73 |
%% Backend & Frontend with Origin-Specific Metrics
|
| 74 |
T --> |Read| U[backend.py]
|
| 75 |
I --> |Read| U
|
| 76 |
-
U --> |make_model_table| V["Model Rankings<br/>Origin-Specific Metrics"]
|
| 77 |
U --> |make_country_table| W["Country Aggregation"]
|
| 78 |
-
U --> |
|
|
|
|
|
|
|
| 79 |
X --> |"JSON Response"| Y["Frontend React App"]
|
| 80 |
|
| 81 |
%% UI Components
|
|
@@ -83,14 +83,16 @@ flowchart TD
|
|
| 83 |
Y --> Z2["ModelTable.js<br/>Model Rankings"]
|
| 84 |
Y --> Z3["LanguageTable.js<br/>Language Coverage"]
|
| 85 |
Y --> Z4["DatasetTable.js<br/>Task Performance"]
|
|
|
|
|
|
|
| 86 |
|
| 87 |
%% Data Sources with Origin Information
|
| 88 |
subgraph DS ["Data Sources"]
|
| 89 |
-
DS1["
|
| 90 |
-
|
| 91 |
-
DS3["ARC<br/>
|
| 92 |
-
DS4["TruthfulQA<br/>
|
| 93 |
-
DS5["MGSM<br/>
|
| 94 |
end
|
| 95 |
|
| 96 |
DS1 --> Q1
|
|
@@ -115,63 +117,74 @@ flowchart TD
|
|
| 115 |
classDef frontend fill:#f8d7da,stroke:#721c24,color:#721c24
|
| 116 |
classDef translation fill:#d4edda,stroke:#155724,color:#155724
|
| 117 |
|
| 118 |
-
class A1,
|
| 119 |
class Q1,Q2,Q3,Q4,Q5,Q6,P evaluation
|
| 120 |
class R,F,G,X api
|
| 121 |
class T,I storage
|
| 122 |
-
class Y,Z1,Z2,Z3,Z4 frontend
|
| 123 |
class Google_Translate,DS_translated,DS_native translation
|
| 124 |
```
|
| 125 |
|
| 126 |
## Architecture Components
|
| 127 |
|
| 128 |
### π΅ Model Discovery (Light Gray)
|
| 129 |
-
- **Static Curated Models**: Handpicked important models for comprehensive evaluation
|
| 130 |
-
- **Dynamic Popular Models**:
|
| 131 |
- **Quality Control**: Blocklist for problematic or incompatible models
|
| 132 |
-
- **Model Validation**: API availability checks
|
| 133 |
-
- **
|
| 134 |
- **Metadata Enrichment**: Rich model information from OpenRouter and HuggingFace APIs
|
| 135 |
|
| 136 |
### π£ Evaluation Pipeline (Medium Gray)
|
| 137 |
- **7 Active Tasks**: Translation (bidirectional), Classification, MMLU, ARC, TruthfulQA, MGSM
|
| 138 |
- **Unified English Zero-Shot Prompting**: All tasks use English instructions with target language content
|
|
|
|
| 139 |
- **Origin Tagging**: Distinguishes between human-translated ('human') and machine-translated ('machine') data
|
| 140 |
- **Combinatorial Approach**: Systematic evaluation across Model Γ Language Γ Task combinations
|
| 141 |
-
- **Sample-based**: 10 evaluations per combination for statistical reliability
|
| 142 |
-
- **Batch Processing**:
|
|
|
|
|
|
|
| 143 |
- **Dual Deployment**: `main.py` for local/GitHub, `main_gcs.py` for Google Cloud with GCS storage
|
| 144 |
|
| 145 |
### π API Integration (Light Gray)
|
| 146 |
- **OpenRouter**: Primary model inference API for all language model tasks
|
| 147 |
-
- **Rate Limiting**:
|
| 148 |
-
- **
|
| 149 |
-
- **
|
| 150 |
-
- **
|
|
|
|
| 151 |
|
| 152 |
### π’ Data Storage (Cyan)
|
| 153 |
- **results.json**: Aggregated evaluation scores with origin-specific metrics
|
|
|
|
| 154 |
- **models.json**: Dynamic model list with metadata and validation status
|
| 155 |
-
- **languages.json**: Language information with population data
|
|
|
|
| 156 |
|
| 157 |
### π‘ Frontend Visualization (Light Red)
|
| 158 |
-
- **WorldMap**: Interactive country-level visualization
|
| 159 |
-
- **ModelTable**: Ranked model performance leaderboard with origin-specific columns
|
| 160 |
-
- **LanguageTable**: Language coverage and speaker statistics
|
| 161 |
- **DatasetTable**: Task-specific performance breakdowns with human/machine distinction
|
|
|
|
|
|
|
|
|
|
| 162 |
|
| 163 |
### π΅ Translation & Origin Tracking (Light Green)
|
| 164 |
-
- **
|
|
|
|
| 165 |
- **Origin Tagging**: Automatic classification of data sources (human vs. machine translated)
|
| 166 |
- **Separate Metrics**: Frontend displays distinct scores for human and machine-translated data
|
|
|
|
| 167 |
|
| 168 |
## Data Flow Summary
|
| 169 |
|
| 170 |
-
1. **Model Discovery**:
|
| 171 |
-
2. **Evaluation Setup**: Generate all valid Model Γ Language Γ Task combinations with origin tracking
|
| 172 |
-
3. **Task Execution**: Run evaluations using unified English prompting and
|
| 173 |
-
4. **Result Processing**: Aggregate scores by model+language+task+origin and save to JSON files
|
| 174 |
-
5. **Backend Serving**: FastAPI serves processed data with origin-specific metrics via REST API
|
| 175 |
-
6. **Frontend Display**: React app visualizes data through interactive components with transparency indicators
|
| 176 |
|
| 177 |
-
This architecture enables scalable, automated evaluation of AI language models across diverse languages and tasks while providing real-time insights through an intuitive web interface with methodological transparency.
|
|
|
|
| 7 |
```mermaid
|
| 8 |
flowchart TD
|
| 9 |
%% Model Sources
|
| 10 |
+
A1["important_models<br/>Static Curated List<br/>~34 models"] --> D[load_models]
|
|
|
|
|
|
|
| 11 |
A4["blocklist<br/>Exclusions"] --> D
|
| 12 |
|
| 13 |
%% Model Processing
|
| 14 |
+
D --> |"Combine & Dedupe"| E["Dynamic Model List<br/>Validated Models"]
|
| 15 |
E --> |get_or_metadata| F["OpenRouter API<br/>Model Metadata"]
|
| 16 |
F --> |get_hf_metadata| G["HuggingFace API<br/>Model Details"]
|
| 17 |
G --> H["Enriched Model DataFrame"]
|
| 18 |
H --> |Save| I[models.json]
|
| 19 |
|
| 20 |
%% Model Validation & Cost Filtering
|
| 21 |
+
H --> |"Validate Models<br/>Check API Availability<br/>No User Data Training"| H1["Valid Models Only<br/>Cost β€ $15/1M tokens"]
|
| 22 |
+
H1 --> H2["Robust Model List<br/>Default: Top 40 models"]
|
| 23 |
|
| 24 |
%% Language Data
|
| 25 |
+
J["languages.py<br/>BCP-47 + Population<br/>Glottolog Families"] --> K["Languages Sorted by Speakers<br/>Default: Up to 1000 languages"]
|
| 26 |
|
| 27 |
%% Task Registry with Unified Prompting
|
| 28 |
+
L["tasks.py<br/>7 Evaluation Tasks"] --> M["Task Functions<br/>Unified English Zero-Shot<br/>Reasoning Template"]
|
| 29 |
M --> M1["translation_from/to<br/>BLEU + ChrF"]
|
| 30 |
M --> M2["classification<br/>Accuracy"]
|
| 31 |
M --> M3["mmlu<br/>Accuracy"]
|
|
|
|
| 37 |
subgraph OTF [On-the-fly Dataset Translation]
|
| 38 |
direction LR
|
| 39 |
DS_raw["Raw English Dataset<br/>"] --> Google_Translate["Google Translate API"]
|
| 40 |
+
Google_Translate --> DS_translated["Translated Dataset<br/>e.g., MGSM/ARC<br/>Origin: 'machine'"]
|
| 41 |
+
DS_native["Native Dataset<br/>e.g., AfriMMLU/Global-MMLU<br/>Origin: 'human'"]
|
| 42 |
end
|
| 43 |
|
| 44 |
%% Evaluation Pipeline
|
| 45 |
+
H2 --> |"models ID<br/>Default: 40 models"| N["main.py / main_gcs.py<br/>evaluate"]
|
| 46 |
+
K --> |"languages bcp_47<br/>Default: 1000 languages"| N
|
| 47 |
L --> |"tasks.items"| N
|
| 48 |
+
N --> |"Filter by model.tasks<br/>Filter by valid task languages"| O["Valid Combinations<br/>Model Γ Language Γ Task"]
|
| 49 |
+
O --> |"10 samples each"| P["Evaluation Execution<br/>Batch Processing<br/>Batch Size: 2000"]
|
| 50 |
|
| 51 |
%% Task Execution with Origin Tracking
|
| 52 |
P --> Q1[translate_and_evaluate<br/>Origin: 'human']
|
| 53 |
P --> Q2[classify_and_evaluate<br/>Origin: 'human']
|
| 54 |
+
P --> Q3[mmlu_and_evaluate<br/>Origin: 'human'<br/>no on-the-fly; uses auto-translated if available]
|
| 55 |
P --> Q4[arc_and_evaluate<br/>Origin: 'human'/'machine']
|
| 56 |
+
P --> Q5[truthfulqa_and_evaluate<br/>Origin: 'human'<br/>no on-the-fly; relies on available datasets]
|
| 57 |
P --> Q6[mgsm_and_evaluate<br/>Origin: 'human'/'machine']
|
| 58 |
|
| 59 |
%% API Calls with Error Handling
|
| 60 |
+
Q1 --> |"complete() API<br/>Rate Limiting<br/>Reasoning: Low Effort"| R["OpenRouter<br/>Model Inference"]
|
| 61 |
+
Q2 --> |"complete() API<br/>Rate Limiting<br/>Reasoning: Low Effort"| R
|
| 62 |
+
Q3 --> |"complete() API<br/>Rate Limiting<br/>Reasoning: Low Effort"| R
|
| 63 |
+
Q4 --> |"complete() API<br/>Rate Limiting<br/>Reasoning: Low Effort"| R
|
| 64 |
+
Q5 --> |"complete() API<br/>Rate Limiting<br/>Reasoning: Low Effort"| R
|
| 65 |
+
Q6 --> |"complete() API<br/>Rate Limiting<br/>Reasoning: Low Effort"| R
|
| 66 |
|
| 67 |
%% Results Processing with Origin Aggregation
|
| 68 |
+
R --> |Scores| S["Result Aggregation<br/>Mean by model+lang+task+origin<br/>Bootstrap Confidence Intervals"]
|
| 69 |
+
S --> |Save| T["results.json<br/>results-detailed.json"]
|
| 70 |
|
| 71 |
%% Backend & Frontend with Origin-Specific Metrics
|
| 72 |
T --> |Read| U[backend.py]
|
| 73 |
I --> |Read| U
|
| 74 |
+
U --> |make_model_table| V["Model Rankings<br/>Origin-Specific Metrics<br/>Confidence Intervals"]
|
| 75 |
U --> |make_country_table| W["Country Aggregation"]
|
| 76 |
+
U --> |make_language_tier_history| V2["Language Tier History<br/>Top 1, 2-20, 20-200"]
|
| 77 |
+
U --> |make_license_history| V3["License History<br/>Open-source vs Commercial"]
|
| 78 |
+
U --> |"API Endpoint"| X["FastAPI /api/data<br/>arc_accuracy_human<br/>arc_accuracy_machine<br/>language_tier_history<br/>license_history"]
|
| 79 |
X --> |"JSON Response"| Y["Frontend React App"]
|
| 80 |
|
| 81 |
%% UI Components
|
|
|
|
| 83 |
Y --> Z2["ModelTable.js<br/>Model Rankings"]
|
| 84 |
Y --> Z3["LanguageTable.js<br/>Language Coverage"]
|
| 85 |
Y --> Z4["DatasetTable.js<br/>Task Performance"]
|
| 86 |
+
Y --> Z5["LanguageTierHistoryPlot.js<br/>Tier-based Trends"]
|
| 87 |
+
Y --> Z6["LicenseHistoryPlot.js<br/>License-based Trends"]
|
| 88 |
|
| 89 |
%% Data Sources with Origin Information
|
| 90 |
subgraph DS ["Data Sources"]
|
| 91 |
+
DS1["FLORES+<br/>Translation Sentences<br/>Origin: 'human'"]
|
| 92 |
+
DS2["MMLU Variants<br/>AfriMMLU/Global-MMLU/MMMLU<br/>HF Auto-translated MMLU<br/>Origin: 'human' or 'machine'"]
|
| 93 |
+
DS3["Uhuru ARC Easy<br/>Auto-translated ARC<br/>Origin: 'human' or 'machine'"]
|
| 94 |
+
DS4["Uhura TruthfulQA<br/>Auto-translated TruthfulQA<br/>Origin: 'human' or 'machine'"]
|
| 95 |
+
DS5["MGSM Variants<br/>MGSM/AfriMGSM/GSM8K-X<br/>Auto-translated GSM<br/>Origin: 'human' or 'machine'"]
|
| 96 |
end
|
| 97 |
|
| 98 |
DS1 --> Q1
|
|
|
|
| 117 |
classDef frontend fill:#f8d7da,stroke:#721c24,color:#721c24
|
| 118 |
classDef translation fill:#d4edda,stroke:#155724,color:#155724
|
| 119 |
|
| 120 |
+
class A1,A4 modelSource
|
| 121 |
class Q1,Q2,Q3,Q4,Q5,Q6,P evaluation
|
| 122 |
class R,F,G,X api
|
| 123 |
class T,I storage
|
| 124 |
+
class Y,Z1,Z2,Z3,Z4,Z5,Z6 frontend
|
| 125 |
class Google_Translate,DS_translated,DS_native translation
|
| 126 |
```
|
| 127 |
|
| 128 |
## Architecture Components
|
| 129 |
|
| 130 |
### π΅ Model Discovery (Light Gray)
|
| 131 |
+
- **Static Curated Models**: Handpicked important models (~34 models) for comprehensive evaluation
|
| 132 |
+
- **Dynamic Popular Models**: Web scraping capability available but currently disabled
|
| 133 |
- **Quality Control**: Blocklist for problematic or incompatible models
|
| 134 |
+
- **Model Validation**: API availability checks, cost filtering (β€$15/1M tokens), and exclusion of providers that train on user data
|
| 135 |
+
- **Default Selection**: Top 40 models by default (configurable via N_MODELS)
|
| 136 |
- **Metadata Enrichment**: Rich model information from OpenRouter and HuggingFace APIs
|
| 137 |
|
| 138 |
### π£ Evaluation Pipeline (Medium Gray)
|
| 139 |
- **7 Active Tasks**: Translation (bidirectional), Classification, MMLU, ARC, TruthfulQA, MGSM
|
| 140 |
- **Unified English Zero-Shot Prompting**: All tasks use English instructions with target language content
|
| 141 |
+
- **Reasoning Template**: Tasks use structured reasoning format with `<reasoning>...</reasoning><final_answer>...</final_answer>` tags
|
| 142 |
- **Origin Tagging**: Distinguishes between human-translated ('human') and machine-translated ('machine') data
|
| 143 |
- **Combinatorial Approach**: Systematic evaluation across Model Γ Language Γ Task combinations
|
| 144 |
+
- **Sample-based**: 10 evaluations per combination for statistical reliability (configurable via N_SENTENCES)
|
| 145 |
+
- **Batch Processing**: 2000 tasks per batch with rate limiting and error resilience
|
| 146 |
+
- **Language Filtering**: Pre-computed valid languages per task to filter invalid combinations
|
| 147 |
+
- **Default Scale**: 40 models Γ 1000 languages Γ 7 tasks Γ 10 samples (configurable via environment variables)
|
| 148 |
- **Dual Deployment**: `main.py` for local/GitHub, `main_gcs.py` for Google Cloud with GCS storage
|
| 149 |
|
| 150 |
### π API Integration (Light Gray)
|
| 151 |
- **OpenRouter**: Primary model inference API for all language model tasks
|
| 152 |
+
- **Rate Limiting**: Async rate limiters (20 req/s OpenRouter, 10 req/s Google Translate, 5 req/s HuggingFace)
|
| 153 |
+
- **Reasoning Configuration**: Low-effort reasoning mode enabled for efficiency
|
| 154 |
+
- **Error Handling**: Graceful handling of timeouts, rate limits, filtered content, and model unavailability
|
| 155 |
+
- **HuggingFace**: Model metadata and open-source model information via HfApi
|
| 156 |
+
- **Google Translate**: Specialized translation API for on-the-fly dataset translation (when needed)
|
| 157 |
|
| 158 |
### π’ Data Storage (Cyan)
|
| 159 |
- **results.json**: Aggregated evaluation scores with origin-specific metrics
|
| 160 |
+
- **results-detailed.json**: Detailed results with individual sample scores for bootstrap CI calculation
|
| 161 |
- **models.json**: Dynamic model list with metadata and validation status
|
| 162 |
+
- **languages.json**: Language information with population data, Glottolog families, and script information
|
| 163 |
+
- **Immutable Log**: Results are cached and merged to avoid re-computation
|
| 164 |
|
| 165 |
### π‘ Frontend Visualization (Light Red)
|
| 166 |
+
- **WorldMap**: Interactive country-level visualization with language selection
|
| 167 |
+
- **ModelTable**: Ranked model performance leaderboard with origin-specific columns and confidence intervals
|
| 168 |
+
- **LanguageTable**: Language coverage and speaker statistics with confidence intervals
|
| 169 |
- **DatasetTable**: Task-specific performance breakdowns with human/machine distinction
|
| 170 |
+
- **LanguageTierHistoryPlot**: Historical trends for language tiers (Top 1, Top 2-20, Top 20-200)
|
| 171 |
+
- **LicenseHistoryPlot**: Historical trends comparing open-source vs commercial models
|
| 172 |
+
- **Confidence Intervals**: Bootstrap-based 95% confidence intervals for all metrics
|
| 173 |
|
| 174 |
### π΅ Translation & Origin Tracking (Light Green)
|
| 175 |
+
- **Dataset-Based Translation**: Uses HuggingFace auto-translated datasets (MMLU, ARC, TruthfulQA, MGSM) when available
|
| 176 |
+
- **On-the-fly Translation**: Google Translate API available but primarily used for translation tasks
|
| 177 |
- **Origin Tagging**: Automatic classification of data sources (human vs. machine translated)
|
| 178 |
- **Separate Metrics**: Frontend displays distinct scores for human and machine-translated data
|
| 179 |
+
- **Dataset Variants**: Supports multiple dataset variants (e.g., AfriMMLU, Global-MMLU, MMMLU for MMLU)
|
| 180 |
|
| 181 |
## Data Flow Summary
|
| 182 |
|
| 183 |
+
1. **Model Discovery**: Load curated models (~34) β validate API availability and cost (β€$15/1M tokens) β exclude providers training on user data β enrich with metadata from OpenRouter and HuggingFace
|
| 184 |
+
2. **Evaluation Setup**: Generate all valid Model Γ Language Γ Task combinations (default: 40 models Γ 1000 languages) with pre-computed language filtering and origin tracking
|
| 185 |
+
3. **Task Execution**: Run evaluations using unified English prompting with reasoning templates, batch processing (2000 per batch), and rate limiting
|
| 186 |
+
4. **Result Processing**: Aggregate scores by model+language+task+origin, compute bootstrap confidence intervals, and save to JSON files (results.json and results-detailed.json)
|
| 187 |
+
5. **Backend Serving**: FastAPI serves processed data with origin-specific metrics, confidence intervals, language tier history, and license history via REST API
|
| 188 |
+
6. **Frontend Display**: React app visualizes data through interactive components (WorldMap, ModelTable, LanguageTable, DatasetTable, LanguageTierHistoryPlot, LicenseHistoryPlot) with transparency indicators and confidence intervals
|
| 189 |
|
| 190 |
+
This architecture enables scalable, automated evaluation of AI language models across diverse languages and tasks while providing real-time insights through an intuitive web interface with methodological transparency and statistical rigor.
|