Spaces:
Running
Running
| import re | |
| from collections import defaultdict | |
| from joblib.memory import Memory | |
| import pandas as pd | |
| from language_data.population_data import LANGUAGE_SPEAKING_POPULATION | |
| cache = Memory(location=".cache", verbose=0).cache | |
| def population(bcp_47): | |
| items = { | |
| re.sub(r"^[a-z]+-", "", lang): pop | |
| for lang, pop in LANGUAGE_SPEAKING_POPULATION.items() | |
| if re.match(rf"^{bcp_47}-[A-Z]{{2}}$", lang) | |
| } | |
| return items | |
| def make_country_table(language_table): | |
| countries = defaultdict(list) | |
| for lang in language_table.itertuples(): | |
| for country, speaker_pop in population(lang.bcp_47).items(): | |
| countries[country].append( | |
| { | |
| "name": lang.language_name, | |
| "bcp_47": lang.bcp_47, | |
| "population": speaker_pop, | |
| "score": lang.average if not pd.isna(lang.average) else 0, | |
| } | |
| ) | |
| for country, languages in countries.items(): | |
| speaker_pop = sum(entry["population"] for entry in languages) | |
| if speaker_pop < 1000: # π― Grey out low-population countries | |
| score = None # This will make them appear grey on the map | |
| else: | |
| score = ( | |
| sum(entry["score"] * entry["population"] for entry in languages) | |
| / speaker_pop | |
| ) | |
| countries[country] = { | |
| "score": score, | |
| "languages": languages, | |
| } | |
| countries = [{"iso2": country, **data} for country, data in countries.items()] | |
| return pd.DataFrame(countries) | |