Spaces:
Running
Running
| import os | |
| from pathlib import Path | |
| import pandas as pd | |
| from datasets import Dataset, get_dataset_config_names, load_dataset | |
| from datasets.exceptions import DatasetNotFoundError | |
| from huggingface_hub.errors import RepositoryNotFoundError | |
| from joblib.memory import Memory | |
| from langcodes import standardize_tag | |
| cache = Memory(location=".cache", verbose=0).cache | |
| TOKEN = os.getenv("HUGGINGFACE_ACCESS_TOKEN") | |
| # Macrolanguage mappings: when standardize_tag returns a macrolanguage, | |
| # map it to the preferred specific variant for consistency across datasets. | |
| # This ensures results from different benchmarks use the same language code. | |
| MACROLANGUAGE_MAPPINGS = { | |
| "no": "nb", # Norwegian -> Norwegian Bokmål (most widely used variant) | |
| # Add more mappings here as needed, e.g.: | |
| # "ms": "zsm", # Malay -> Standard Malay | |
| # "ar": "arb", # Arabic -> Standard Arabic | |
| } | |
| def standardize_bcp47(tag: str, macro: bool = True) -> str: | |
| """Standardize a BCP-47 tag with consistent macrolanguage handling.""" | |
| standardized = standardize_tag(tag, macro=macro) | |
| return MACROLANGUAGE_MAPPINGS.get(standardized, standardized) | |
| def _get_dataset_config_names(dataset, **kwargs): | |
| return get_dataset_config_names(dataset, **kwargs) | |
| def _load_dataset(dataset, subset, **kwargs): | |
| return load_dataset(dataset, subset, **kwargs) | |
| # Cache individual dataset items to avoid reloading entire datasets | |
| def _get_dataset_item(dataset, subset, split, index, **kwargs): | |
| """Load a single item from a dataset efficiently""" | |
| ds = load_dataset(dataset, subset, split=split, **kwargs) | |
| return ds[index] if index < len(ds) else None | |
| def load(fname: str): | |
| try: | |
| ds = load_dataset(f"fair-forward/evals-for-every-language-{fname}", token=TOKEN) | |
| return ds["train"].to_pandas() | |
| except (DatasetNotFoundError, RepositoryNotFoundError, KeyError): | |
| return pd.DataFrame() | |
| def save(df: pd.DataFrame, fname: str): | |
| df = df.drop(columns=["__index_level_0__"], errors="ignore") | |
| ds = Dataset.from_pandas(df) | |
| ds.push_to_hub(f"fair-forward/evals-for-every-language-{fname}", token=TOKEN) | |
| Path("results").mkdir(exist_ok=True) | |
| df.to_json(f"results/{fname}.json", orient="records", force_ascii=False, indent=2) | |