Spaces:
Running
Running
| import json | |
| import os | |
| import numpy as np | |
| import pandas as pd | |
| import uvicorn | |
| # Robust import so this file works both as a package module and as a script | |
| try: | |
| # When executed as a package module (recommended): `python -m uvicorn evals.backend:app` | |
| from .countries import make_country_table | |
| except Exception: | |
| try: | |
| # When executed from project root with package path available | |
| from evals.countries import make_country_table | |
| except Exception: | |
| # When executed directly from evals/ directory | |
| from countries import make_country_table | |
| from fastapi import FastAPI, Request | |
| from fastapi.middleware.cors import CORSMiddleware | |
| from fastapi.middleware.gzip import GZipMiddleware | |
| from fastapi.responses import JSONResponse | |
| from fastapi.staticfiles import StaticFiles | |
| scores = pd.read_json("results.json") | |
| languages = pd.read_json("languages.json") | |
| models = pd.read_json("models.json") | |
| def mean(lst): | |
| return sum(lst) / len(lst) if lst else None | |
| task_metrics = [ | |
| "translation_from_bleu", | |
| "translation_to_bleu", | |
| "classification_accuracy", | |
| "mmlu_accuracy", | |
| "arc_accuracy", | |
| "truthfulqa_accuracy", | |
| "mgsm_accuracy", | |
| ] | |
| def compute_normalized_average(df, metrics): | |
| """Compute average of min-max normalized metric columns.""" | |
| normalized_df = df[metrics].copy() | |
| for col in metrics: | |
| if col in normalized_df.columns: | |
| col_min = normalized_df[col].min() | |
| col_max = normalized_df[col].max() | |
| if col_max > col_min: # Avoid division by zero | |
| normalized_df[col] = (normalized_df[col] - col_min) / (col_max - col_min) | |
| else: | |
| normalized_df[col] = 0 # If all values are the same, set to 0 | |
| return normalized_df.mean(axis=1, skipna=False) | |
| def make_model_table(scores_df, models): | |
| # Create a combined task_metric for origin | |
| scores_df["task_metric_origin"] = ( | |
| scores_df["task"] + "_" + scores_df["metric"] + "_" + scores_df["origin"] | |
| ) | |
| # Pivot to get scores for each origin-specific metric | |
| scores_pivot = scores_df.pivot_table( | |
| index="model", | |
| columns="task_metric_origin", | |
| values="score", | |
| aggfunc="mean", | |
| ) | |
| # Create the regular task_metric for the main average calculation | |
| scores_df["task_metric"] = scores_df["task"] + "_" + scores_df["metric"] | |
| main_pivot = scores_df.pivot_table( | |
| index="model", columns="task_metric", values="score", aggfunc="mean" | |
| ) | |
| # Merge the two pivots | |
| df = pd.merge(main_pivot, scores_pivot, on="model", how="outer") | |
| for metric in task_metrics: | |
| if metric not in df.columns: | |
| df[metric] = np.nan | |
| df["average"] = compute_normalized_average(df, task_metrics) | |
| # Compute origin presence per model+metric | |
| origin_presence = ( | |
| scores_df.groupby(["model", "task_metric", "origin"]).size().unstack(fill_value=0) | |
| ) | |
| # Add boolean flags: show asterisk only if exclusively machine-origin contributed | |
| for metric in task_metrics: | |
| human_col_name = "human" if "human" in origin_presence.columns else None | |
| machine_col_name = "machine" if "machine" in origin_presence.columns else None | |
| if human_col_name or machine_col_name: | |
| flags = [] | |
| for model in df.index: | |
| try: | |
| counts = origin_presence.loc[(model, metric)] | |
| except KeyError: | |
| flags.append(False) | |
| continue | |
| human_count = counts.get(human_col_name, 0) if human_col_name else 0 | |
| machine_count = counts.get(machine_col_name, 0) if machine_col_name else 0 | |
| flags.append(machine_count > 0 and human_count == 0) | |
| df[f"{metric}_is_machine"] = flags | |
| else: | |
| df[f"{metric}_is_machine"] = False | |
| df = df.sort_values(by="average", ascending=False).reset_index() | |
| df = pd.merge(df, models, left_on="model", right_on="id", how="left") | |
| df["rank"] = df.index + 1 | |
| # Dynamically find all metric columns to include | |
| final_cols = df.columns | |
| metric_cols = [m for m in final_cols if any(tm in m for tm in task_metrics)] | |
| df = df[ | |
| [ | |
| "rank", "model", "name", "provider_name", "hf_id", "creation_date", | |
| "size", "type", "license", "cost", "average", | |
| *sorted(list(set(metric_cols))) | |
| ] | |
| ] | |
| return df | |
| def make_language_table(scores_df, languages): | |
| # Create a combined task_metric for origin | |
| scores_df["task_metric_origin"] = ( | |
| scores_df["task"] + "_" + scores_df["metric"] + "_" + scores_df["origin"] | |
| ) | |
| # Pivot to get scores for each origin-specific metric | |
| scores_pivot = scores_df.pivot_table( | |
| index="bcp_47", | |
| columns="task_metric_origin", | |
| values="score", | |
| aggfunc="mean", | |
| ) | |
| # Create the regular task_metric for the main average calculation | |
| scores_df["task_metric"] = scores_df["task"] + "_" + scores_df["metric"] | |
| main_pivot = scores_df.pivot_table( | |
| index="bcp_47", columns="task_metric", values="score", aggfunc="mean" | |
| ) | |
| # Merge the two pivots | |
| df = pd.merge(main_pivot, scores_pivot, on="bcp_47", how="outer") | |
| for metric in task_metrics: | |
| if metric not in df.columns: | |
| df[metric] = np.nan | |
| df["average"] = compute_normalized_average(df, task_metrics) | |
| # Compute origin presence per language+metric; show asterisk only if exclusively machine-origin | |
| origin_presence = ( | |
| scores_df.groupby(["bcp_47", "task_metric", "origin"]).size().unstack(fill_value=0) | |
| ) | |
| for metric in task_metrics: | |
| human_col_name = "human" if "human" in origin_presence.columns else None | |
| machine_col_name = "machine" if "machine" in origin_presence.columns else None | |
| if human_col_name or machine_col_name: | |
| flags = [] | |
| for bcp in df.index: | |
| try: | |
| counts = origin_presence.loc[(bcp, metric)] | |
| except KeyError: | |
| flags.append(False) | |
| continue | |
| human_count = counts.get(human_col_name, 0) if human_col_name else 0 | |
| machine_count = counts.get(machine_col_name, 0) if machine_col_name else 0 | |
| flags.append(machine_count > 0 and human_count == 0) | |
| df[f"{metric}_is_machine"] = flags | |
| else: | |
| df[f"{metric}_is_machine"] = False | |
| # Per-row machine-origin flags for each metric (true if any machine-origin score exists for the language) | |
| for metric in task_metrics: | |
| machine_col = f"{metric}_machine" | |
| if machine_col in df.columns: | |
| df[f"{metric}_is_machine"] = df[machine_col].notna() | |
| else: | |
| df[f"{metric}_is_machine"] = False | |
| df = pd.merge(languages, df, on="bcp_47", how="outer") | |
| df = df.sort_values(by="speakers", ascending=False) | |
| # Dynamically find all metric columns to include | |
| final_cols = df.columns | |
| metric_cols = [m for m in final_cols if any(tm in m for tm in task_metrics)] | |
| df = df[ | |
| [ | |
| "bcp_47", "language_name", "autonym", "speakers", "family", | |
| "average", "in_benchmark", | |
| *sorted(list(set(metric_cols))) | |
| ] | |
| ] | |
| return df | |
| app = FastAPI() | |
| app.add_middleware(CORSMiddleware, allow_origins=["*"]) | |
| app.add_middleware(GZipMiddleware, minimum_size=1000) | |
| def serialize(df): | |
| return df.replace({np.nan: None}).to_dict(orient="records") | |
| async def data(request: Request): | |
| body = await request.body() | |
| data = json.loads(body) | |
| selected_languages = data.get("selectedLanguages", {}) | |
| df = scores.groupby(["model", "bcp_47", "task", "metric", "origin"]).mean().reset_index() | |
| # lang_results = pd.merge(languages, lang_results, on="bcp_47", how="outer") | |
| language_table = make_language_table(df, languages) | |
| datasets_df = pd.read_json("datasets.json") | |
| # Identify which metrics have machine translations available | |
| machine_translated_metrics = set() | |
| for _, row in df.iterrows(): | |
| if row["origin"] == "machine": | |
| metric_name = f"{row['task']}_{row['metric']}" | |
| machine_translated_metrics.add(metric_name) | |
| if selected_languages: | |
| # the filtering is only applied for the model table and the country data | |
| df = df[df["bcp_47"].isin(lang["bcp_47"] for lang in selected_languages)] | |
| if len(df) == 0: | |
| model_table = pd.DataFrame() | |
| countries = pd.DataFrame() | |
| else: | |
| model_table = make_model_table(df, models) | |
| countries = make_country_table(make_language_table(df, languages)) | |
| all_tables = { | |
| "model_table": serialize(model_table), | |
| "language_table": serialize(language_table), | |
| "dataset_table": serialize(datasets_df), | |
| "countries": serialize(countries), | |
| "machine_translated_metrics": list(machine_translated_metrics), | |
| } | |
| return JSONResponse(content=all_tables) | |
| # Only serve static files if build directory exists (production mode) | |
| if os.path.exists("frontend/build"): | |
| app.mount("/", StaticFiles(directory="frontend/build", html=True), name="frontend") | |
| else: | |
| print("π§ͺ Development mode: frontend/build directory not found") | |
| print("π Frontend should be running on http://localhost:3000") | |
| print("π‘ API available at http://localhost:8000/api/data") | |
| if __name__ == "__main__": | |
| uvicorn.run(app, host="0.0.0.0", port=int(os.environ.get("PORT", 8000))) | |