File size: 13,725 Bytes
da6e1bc
2cdada4
731eddd
549360a
f3a09a2
da6e1bc
731eddd
2cdada4
731eddd
549360a
a683732
98c6811
c790fdb
 
da6e1bc
2cdada4
eaf2d97
da6e1bc
 
 
731eddd
 
 
da6e1bc
 
 
 
 
 
c790fdb
 
 
2cdada4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
731eddd
 
 
da6e1bc
731eddd
 
 
 
 
f840423
 
 
 
2f9dee1
913253a
 
da6e1bc
2cdada4
c790fdb
 
2cdada4
 
 
 
c790fdb
 
 
 
 
 
 
2cdada4
c790fdb
 
2cdada4
913253a
da6e1bc
 
 
 
 
338dc9b
 
 
da6e1bc
 
941d5c5
2cdada4
da6e1bc
 
 
731eddd
 
da6e1bc
 
2cdada4
da6e1bc
2cdada4
 
da6e1bc
731eddd
 
 
da6e1bc
 
 
f840423
731eddd
 
2f9dee1
913253a
2f9dee1
da6e1bc
 
 
913253a
da6e1bc
 
 
2cdada4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68a93b5
2cdada4
 
 
 
da6e1bc
 
 
731eddd
da6e1bc
 
0384b92
2cdada4
da6e1bc
2cdada4
 
da6e1bc
 
 
 
2cdada4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47170a5
98c6811
ce2acb0
2cdada4
a683732
 
2cdada4
 
 
 
a683732
ce2acb0
 
 
 
 
 
 
2cdada4
ce2acb0
2cdada4
 
ce2acb0
 
731eddd
98c6811
b0aa389
2cdada4
b0aa389
 
2cdada4
 
 
 
b0aa389
 
 
 
 
 
 
2cdada4
b0aa389
2cdada4
 
b0aa389
 
98c6811
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2cdada4
98c6811
 
2cdada4
 
 
 
 
 
98c6811
 
 
 
 
 
 
2cdada4
98c6811
2cdada4
 
98c6811
 
 
47170a5
549360a
2cdada4
549360a
 
 
2cdada4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
549360a
 
 
 
 
 
2cdada4
 
549360a
2cdada4
 
549360a
 
 
 
2cdada4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da6e1bc
a683732
2f9dee1
adc94d7
 
913253a
adc94d7
b0aa389
98c6811
549360a
2f9dee1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
import random
import re
from functools import partial
from textwrap import dedent

import evaluate
import sentencepiece as spm
from datasets_.arc import load_uhura_arc_easy
from datasets_.flores import flores_sentences
from datasets_.mgsm import load_mgsm, parse_number
from datasets_.mmlu import load_mmlu
from datasets_.truthfulqa import load_truthfulqa
from google.cloud import translate_v2 as translate
from langcodes import closest_supported_match
from languages import languages, script_name
from models import complete, translate_google

bleu = evaluate.load("bleu")
chrf = evaluate.load("chrf")
wer = evaluate.load("wer")
tokenizer = spm.SentencePieceProcessor(
    model_file="data/spbleu/flores200_sacrebleu_tokenizer_spm.model"
)

# sample languages to translate to
target_languages = languages[languages["in_benchmark"]].sample(
    frac=1, weights="speakers", replace=True, random_state=42
)

translate_client = translate.Client()
supported_languages = [l["language"] for l in translate_client.get_languages()]

async def query(model, prompt):
    # this is just for sharing config across tasks
    try:
        response = await complete(
            model=model,
            messages=[{"role": "user", "content": prompt}],
            temperature=0,
            max_tokens=1024,
            extra_body=dict(
                reasoning=dict(
                    effort="low",  # Can be "high", "medium", or "low" (OpenAI-style)
                    # max_tokens=1024,  # Specific token limit (Anthropic-style)
                    # Optional: Default is false. All models support this.
                    exclude=True,  # Set to true to exclude reasoning tokens from response
                )
            ),
        )
    except Exception as e:
        print(f"exception for model {model}: {e}")
        return None
    # remove <think>...</think> sections (it's probably an OpenRouter bug that they are included)
    response = re.sub(r"<think>.*</think>", "", response).strip()
    # sometimes there's also a lone <think> at the start for some reason
    response = re.sub(r"<think>", "", response).strip()
    return response


reasoning_template = (
    "Response format:<reasoning>...</reasoning><final_answer>...</final_answer>"
)


def format_multiple_choice(item):
    return dedent(f"""
    {reasoning_template}

    ---
    
    {item["question"]}
    
    A: {item["choices"][0]}
    B: {item["choices"][1]}
    C: {item["choices"][2]}
    D: {item["choices"][3]}""")


def extract_mc_response(response):
    if not response:
        return None
    final_answer = re.search(r"\<final_answer\>(.*)\<\/final_answer\>", response)
    return final_answer[1].strip() if final_answer else None


async def translate_and_evaluate(model, bcp_47, sentence_nr, mode="from"):
    original_language = languages[languages["bcp_47"] == bcp_47].iloc[0]
    target_language = target_languages.iloc[sentence_nr]
    match mode:
        case "from":
            pass
        case "to":
            original_language, target_language = target_language, original_language
    if (
        flores_sentences(original_language) is None
        or flores_sentences(target_language) is None
    ):
        return []
    original_sentence = flores_sentences(original_language)["text"][sentence_nr].strip()
    target_sentence = flores_sentences(target_language)["text"][sentence_nr].strip()
    script = script_name(target_language.flores_path.split("_")[1])
    translation_prompt = f"Translate the following text to the {target_language.language_name} language; use the {script} script; reply only with the translation:\n\n{original_sentence}"
    if model == "google/translate-v2":
        original_language = closest_supported_match(
            original_language.bcp_47, supported_languages
        )
        target_language = closest_supported_match(
            target_language.bcp_47, supported_languages
        )
        if original_language == target_language:
            prediction = original_sentence
        elif original_language is None or target_language is None:
            prediction = None
        else:
            prediction = await translate_google(
                original_sentence, original_language, target_language
            )
    else:
        prediction = await query(model, translation_prompt)
    if prediction:
        bleu_score = bleu.compute(
            predictions=[prediction],
            references=[target_sentence],
            tokenizer=tokenizer.tokenize,
        )
        chrf_score = chrf.compute(
            predictions=[prediction], references=[target_sentence]
        )
    else:
        bleu_score = {"bleu": 0}
        chrf_score = {"score": 0}

    return [
        {
            "model": model,
            "bcp_47": bcp_47,
            "task": f"translation_{mode}",
            "metric": metric,
            "score": score,
            "origin": "human",  # FLORES+ is human-translated
            "sentence_nr": sentence_nr,
            "prompt": translation_prompt,
            "response": prediction,
        }
        for metric, score in (
            ("bleu", bleu_score["bleu"]),
            ("chrf", chrf_score["score"] / 100),
        )
    ]


async def classify_and_evaluate(model, bcp_47, nr):
    language = languages[languages["bcp_47"] == bcp_47].iloc[0]
    sentences = flores_sentences(language)
    if sentences is None:
        return []
    sentences = sentences.dropna(subset=["topic"])
    sentences["topic"] = sentences["topic"].str.lower()
    paragraphs = (
        sentences.groupby("url").agg({"text": " ".join, "topic": "first"}).reset_index()
    )
    top_topics = paragraphs.value_counts("topic").head(5).index
    paragraphs = paragraphs[paragraphs["topic"].isin(top_topics)]
    test_paragraph = paragraphs.sample(n=1, random_state=nr).iloc[0]

    prompt = f"""Classify the following text into one of these topics: {", ".join(top_topics)}.
Reply with only the topic name.

Text:
{test_paragraph.text}
"""
    response = await query(model, prompt)
    pred = response.lower().strip() if response else ""
    true = test_paragraph.topic.lower().strip()
    others = [t for t in top_topics if t != true]
    acc = (
        int(
            pred.startswith(true)
            or (true in pred and not any(o in pred for o in others))
        )
        if pred
        else 0
    )

    return [
        {
            "model": model,
            "bcp_47": bcp_47,
            "task": "classification",
            "metric": "accuracy",
            "score": acc,
            "origin": "human",  # FLORES+ is human-translated
            "sentence_nr": nr,
            "prompt": prompt,
            "response": pred,
        }
    ]


# def corrupt_sentence(sentence):
#     # replace 5% of the sentence with <mask>
#     mask_length = round(len(sentence) * 0.05)
#     start = random.randint(0, len(sentence) - mask_length)
#     end = start + mask_length
#     return sentence[:start] + "<mask>" + sentence[end:]


# async def mlm_and_evaluate(model, language_bcp_47, nr):
#     language = languages[languages["bcp_47"] == language_bcp_47].iloc[0]
#     sentences = flores_sentences(language)
#     if sentences is None:
#         return []
#     sentences = pd.DataFrame(sentences, columns=["text"])
#     sentences["corrupt_text"] = sentences["text"].apply(corrupt_sentence)
#     examples = sentences.sample(n=10, random_state=42)
#     test_sentences = sentences[~sentences["text"].isin(examples["text"])].sample(
#         frac=1, random_state=42
#     )
#     test_sentence = test_sentences.iloc[nr]
#     messages = []
#     for example in examples.itertuples():
#         messages += [
#             {"role": "user", "content": example.corrupt_text},
#             {"role": "assistant", "content": example.text},
#         ]
#     prediction = await complete(
#         model=model,
#         messages=[
#             *messages,
#             {
#                 "role": "user",
#                 "content": test_sentence.corrupt_text,
#             },
#         ],
#         temperature=0,
#         max_tokens=1024,
#     )
#     chrf_score = chrf.compute(predictions=[prediction], references=[test_sentence.text])
#     return [
#         {
#             "model": model,
#             "bcp_47": language["bcp_47"],
#             "task": "language_modeling",
#             "metric": "chrf",
#             "score": chrf_score["score"] / 100,
#             "sentence_nr": nr,
#         }
#     ]


async def mmlu_and_evaluate(model, language_bcp_47, nr):
    ds_name, task, origin = await load_mmlu(language_bcp_47, nr)
    if not task:
        return []
    prompt = f"""Solve the following multiple choice question. Reason step-by-step and then write the final answer as a single letter.\n\n{format_multiple_choice(task)}"""
    response = await query(model, prompt)
    final_response = extract_mc_response(response)
    acc = int(final_response == task["answer"]) if final_response else 0

    return [
        {
            "model": model,
            "bcp_47": language_bcp_47,
            "task": "mmlu",
            "metric": "accuracy",
            "score": acc,
            "origin": origin,
            "sentence_nr": nr,
            "prompt": prompt,
            "response": response,
        }
    ]


async def arc_and_evaluate(model, language_bcp_47, nr):
    ds_name, task, origin = load_uhura_arc_easy(language_bcp_47, nr)
    if not task:
        return []
    prompt = f"Solve the following multiple choice question. Reason step-by-step and then write the final answer as a single letter.\n\n{format_multiple_choice(task)}"
    response = await query(model, prompt)
    final_response = extract_mc_response(response)
    acc = int(final_response == task["answer"]) if final_response else 0
    return [
        {
            "model": model,
            "bcp_47": language_bcp_47,
            "task": "arc",
            "metric": "accuracy",
            "score": acc,
            "origin": origin,
            "sentence_nr": nr,
            "prompt": prompt,
            "response": response,
        }
    ]


letters = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"


def shuffle_choices_and_labels(item):
    indices = list(range(len(item["choices"])))
    random.shuffle(indices)
    item["choices"] = [item["choices"][i] for i in indices]
    item["labels"] = [item["labels"][i] for i in indices]
    return item


def format_multiple_choice_truthfulqa(item):
    text = item["question"] + "\n\n"
    for i, choice in enumerate(item["choices"]):
        text += f"{letters[i]}: {choice}\n"
    return text


async def truthfulqa_and_evaluate(model, language_bcp_47, nr):
    ds_name, task, origin = await load_truthfulqa(language_bcp_47, nr)
    if not task:
        return []
    correct_choice_index = task["labels"].index(1)
    answer = letters[correct_choice_index]
    prompt = f"""Answer the following multiple choice question. Reason step-by-step and then write the final answer as a single letter.\n\n{format_multiple_choice_truthfulqa(task)}"""
    response = await query(model, prompt)
    final_response = extract_mc_response(response)
    acc = int(final_response.upper() == answer) if final_response else 0
    return [
        {
            "model": model,
            "bcp_47": language_bcp_47,
            "task": "truthfulqa",
            "metric": "accuracy",
            "score": acc,
            "origin": origin,
            "sentence_nr": nr,
            "prompt": prompt,
            "response": response,
        }
    ]


async def mgsm_and_evaluate(model, language_bcp_47, nr):
    ds_slug, question, origin = load_mgsm(language_bcp_47, nr)
    if not question:
        return []

    prompt = dedent(f"""
    Solve the following math problem. Reason step-by-step and then write the final answer as a single number.

    {reasoning_template}

    ---

    {question["question"]}""").strip()
    response = await query(model, prompt)
    number = extract_mc_response(response)
    acc = (
        int(parse_number(number) == parse_number(question["answer_number"]))
        if number
        else 0
    )
    return [
        {
            "model": model,
            "bcp_47": language_bcp_47,
            "task": "mgsm",
            "metric": "accuracy",
            "score": acc,
            "origin": origin,
            "sentence_nr": nr,
            "prompt": prompt,
            "response": response,
        }
    ]


# async def transcribe_and_evaluate(model, language_bcp_47, nr):
#     language = languages[languages["bcp_47"] == language_bcp_47].iloc[0]
#     fleurs = pd.read_csv(
#         f"data/fleurs/{language.fleurs_tag}/dev.tsv",
#         sep="\t",
#         names=[
#             "id",
#             "fname",
#             "raw_transcription",
#             "transcription",
#             "words",
#             "id2",
#             "gender",
#         ],
#     )
#     item = fleurs.iloc[nr]
#     path = f"data/fleurs/{language.fleurs_tag}/audio/dev/{item.fname}"
#     pred = await transcribe(path, model=model)
#     wer_score = wer.compute(predictions=[pred], references=[item.transcription])
#     return [
#         {
#             "model": model,
#             "bcp_47": language["bcp_47"],
#             "task": "asr",
#             "metric": "wer",
#             "score": wer_score,
#             "sentence_nr": nr,
#         }
#     ]


tasks = {
    "translation_from": partial(translate_and_evaluate, mode="from"),
    "translation_to": partial(translate_and_evaluate, mode="to"),
    "classification": classify_and_evaluate,
    "mmlu": mmlu_and_evaluate,
    "arc": arc_and_evaluate,
    "truthfulqa": truthfulqa_and_evaluate,
    "mgsm": mgsm_and_evaluate,
}