File size: 13,755 Bytes
2c21cf7
4d13673
9002fc2
2c21cf7
 
 
68a93b5
2cdada4
d91b022
2c21cf7
 
 
 
aa92add
 
 
d91b022
2cdada4
aa92add
2cdada4
 
4d13673
9002fc2
eb1696c
 
 
9002fc2
9c2c019
 
 
913253a
9c2c019
b0aa389
549360a
9c2c019
eb1696c
aa92add
941d5c5
972026c
 
941d5c5
 
aa92add
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2cdada4
aa92add
 
2cdada4
aa92add
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2cdada4
aa92add
 
 
2cdada4
aa92add
 
 
 
 
2cdada4
 
a0d1624
aa92add
 
 
2cdada4
 
aa92add
53d2039
aa92add
98c6811
aa92add
2cdada4
aa92add
 
 
 
 
 
2cdada4
aa92add
 
 
 
 
eb1696c
 
 
aa92add
 
 
2cdada4
aa92add
 
 
 
 
2cdada4
aa92add
eb1696c
c790fdb
 
 
 
 
 
 
 
 
 
 
aa92add
 
eb1696c
 
 
 
aa92add
2cdada4
 
aa92add
 
2cdada4
 
4e8cb1a
2cdada4
 
 
 
 
 
aa92add
 
 
98c6811
2cdada4
aa92add
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2cdada4
aa92add
eb1696c
c790fdb
 
 
 
 
 
aa92add
c790fdb
aa92add
eb1696c
 
 
2c21cf7
972026c
aa92add
 
 
 
 
34b05c6
972026c
 
 
aa92add
972026c
 
aa92add
972026c
 
aa92add
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
972026c
 
 
aa92add
 
 
 
 
 
 
 
 
 
 
 
972026c
 
 
 
 
aa92add
34b05c6
972026c
aa92add
972026c
 
aa92add
972026c
aa92add
 
 
 
 
972026c
 
 
 
 
 
aa92add
 
 
 
 
 
 
 
 
 
 
 
972026c
 
2c21cf7
 
 
 
 
 
 
 
 
 
 
d91b022
 
 
 
aa92add
2cdada4
 
aa92add
 
2cdada4
 
 
 
aa92add
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32d50b0
 
 
 
aa92add
 
 
 
972026c
 
2cdada4
aa92add
 
 
 
 
 
 
 
 
 
 
 
2c21cf7
9002fc2
2cdada4
ebaf279
 
2c21cf7
 
4d13673
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
import json
import os

import numpy as np
import pandas as pd
import uvicorn
from countries import make_country_table
from datasets_.util import load
from fastapi import FastAPI, Request
from fastapi.middleware.cors import CORSMiddleware
from fastapi.middleware.gzip import GZipMiddleware
from fastapi.responses import JSONResponse
from fastapi.staticfiles import StaticFiles
from joblib.memory import Memory

cache = Memory(location=".cache", verbose=0).cache

scores = load("results")
scores_detailed = load("results-detailed")
languages = load("languages")
models = load("models")


def mean(lst):
    return sum(lst) / len(lst) if lst else None


task_metrics = [
    "translation_from_bleu",
    "translation_to_bleu",
    "classification_accuracy",
    "mmlu_accuracy",
    "arc_accuracy",
    "mgsm_accuracy",
]


def compute_normalized_average(df, metrics):
    """Compute simple average across metric columns without normalization."""
    return df[metrics].mean(axis=1, skipna=False)


@cache
def compute_bootstrap_ci(
    data_hash, group_cols_tuple, n_bootstrap=1000, ci_level=0.95, seed=42
):
    """Compute bootstrap CIs for grouped data. Cached based on data hash."""
    # This function is called with the actual data passed separately via _ci_cache
    df, group_cols = _ci_cache[data_hash]
    np.random.seed(seed)
    percentiles = [(1 - ci_level) / 2 * 100, (1 + ci_level) / 2 * 100]

    def bootstrap_group(group):
        scores = group["score"].values
        if len(scores) == 0:
            return pd.Series({"ci_lower": None, "ci_upper": None})
        bootstrap_means = [
            np.random.choice(scores, len(scores), replace=True).mean()
            for _ in range(n_bootstrap)
        ]
        ci_lower, ci_upper = np.percentile(bootstrap_means, percentiles)
        return pd.Series({"ci_lower": ci_lower, "ci_upper": ci_upper})

    result = df.groupby(group_cols, as_index=False).apply(
        bootstrap_group, include_groups=False
    )
    result.columns = group_cols + ["ci_lower", "ci_upper"]
    return result


# Thread-safe cache for passing DataFrames to cached function
_ci_cache = {}


def add_confidence_intervals(df, scores_df_detailed, group_col, metrics):
    """DRY helper to add CI columns for metrics and average to a dataframe."""
    if scores_df_detailed is None or scores_df_detailed.empty:
        return df

    detailed = scores_df_detailed.copy()
    detailed["task_metric"] = detailed["task"] + "_" + detailed["metric"]

    # Add CI for each metric
    for metric in metrics:
        metric_data = detailed[detailed["task_metric"] == metric]
        if not metric_data.empty:
            # Create hash based on data shape, groups, and statistics
            group_stats = (
                metric_data.groupby(group_col)["score"]
                .agg(["count", "mean", "std"])
                .round(6)
            )
            data_hash = hash(
                (
                    metric,
                    group_col,
                    len(metric_data),
                    tuple(group_stats.index),
                    tuple(map(tuple, group_stats.values)),
                )
            )
            _ci_cache[data_hash] = (metric_data, [group_col])
            ci_df = compute_bootstrap_ci(data_hash, (group_col,))
            ci_df = ci_df.rename(
                columns={
                    "ci_lower": f"{metric}_ci_lower",
                    "ci_upper": f"{metric}_ci_upper",
                }
            )
            df = pd.merge(df, ci_df, on=group_col, how="left")

    # Add CI for average
    avg_data = detailed[detailed["task_metric"].isin(metrics)]
    if not avg_data.empty:
        # Create hash based on data shape, groups, and statistics
        group_stats = (
            avg_data.groupby(group_col)["score"].agg(["count", "mean", "std"]).round(6)
        )
        data_hash = hash(
            (
                "average",
                group_col,
                len(avg_data),
                tuple(group_stats.index),
                tuple(map(tuple, group_stats.values)),
            )
        )
        _ci_cache[data_hash] = (avg_data, [group_col])
        avg_ci_df = compute_bootstrap_ci(data_hash, (group_col,))
        avg_ci_df = avg_ci_df.rename(
            columns={"ci_lower": "average_ci_lower", "ci_upper": "average_ci_upper"}
        )
        df = pd.merge(df, avg_ci_df, on=group_col, how="left")

    return df


def make_model_table(scores_df, models, scores_df_detailed=None):
    scores_df = scores_df.copy()
    scores_df["task_metric"] = scores_df["task"] + "_" + scores_df["metric"]
    scores_df["task_metric_origin"] = (
        scores_df["task_metric"] + "_" + scores_df["origin"]
    )

    # Pivot scores
    main_pivot = scores_df.pivot_table(
        index="model", columns="task_metric", values="score", aggfunc="mean"
    )
    scores_pivot = scores_df.pivot_table(
        index="model", columns="task_metric_origin", values="score", aggfunc="mean"
    )
    df = pd.merge(main_pivot, scores_pivot, on="model", how="outer")

    # Fill missing metrics and compute average
    for metric in task_metrics:
        df[metric] = df.get(metric, np.nan)
    df["average"] = compute_normalized_average(df, task_metrics)
    df = add_confidence_intervals(df, scores_df_detailed, "model", task_metrics)

    # Add machine-origin flags
    machine_presence = (
        scores_df[scores_df["origin"] == "machine"]
        .groupby(["model", "task_metric"])
        .size()
    )
    for metric in task_metrics:
        df[f"{metric}_contains_machine"] = df.index.map(
            lambda m: (m, metric) in machine_presence.index
        )

    # Sort and add metadata
    df = df.sort_values(by="average", ascending=False).reset_index()
    df = pd.merge(df, models, left_on="model", right_on="id", how="left")
    df["rank"] = df.index + 1
    df["creation_date"] = df["creation_date"].apply(
        lambda x: x.isoformat() if x else None
    )

    # Select columns dynamically
    metric_cols = [m for m in df.columns if any(tm in m for tm in task_metrics)]
    avg_ci_cols = [
        c for c in df.columns if c in ["average_ci_lower", "average_ci_upper"]
    ]

    return df[
        [
            "rank",
            "model",
            "name",
            "provider_name",
            "hf_id",
            "creation_date",
            "size",
            "type",
            "license",
            "cost",
            "average",
            *avg_ci_cols,
            *sorted(set(metric_cols)),
        ]
    ]


def make_language_table(scores_df, languages, scores_df_detailed=None):
    scores_df = scores_df.copy()
    scores_df["task_metric"] = scores_df["task"] + "_" + scores_df["metric"]

    # Pivot scores and origins
    score_pivot = scores_df.pivot_table(
        index="bcp_47", columns="task_metric", values="score", aggfunc="mean"
    )
    origin_pivot = scores_df.pivot_table(
        index="bcp_47", columns="task_metric", values="origin", aggfunc="first"
    )
    origin_pivot = origin_pivot.add_suffix("_origin")
    df = pd.merge(score_pivot, origin_pivot, on="bcp_47", how="outer")

    # Fill missing metrics and compute average
    for metric in task_metrics:
        df[metric] = df.get(metric, np.nan)
    df["average"] = compute_normalized_average(df, task_metrics)

    # For language table, we need to compute scores from detailed data to match CI calculation
    # (CI is computed from all samples, so score should be too)
    if scores_df_detailed is not None and not scores_df_detailed.empty:
        detailed = scores_df_detailed.copy()
        detailed["task_metric"] = detailed["task"] + "_" + detailed["metric"]
        detailed_pivot = detailed.pivot_table(
            index="bcp_47", columns="task_metric", values="score", aggfunc="mean"
        )
        for metric in task_metrics:
            if metric in detailed_pivot.columns:
                df[metric] = detailed_pivot[metric]
        df["average"] = compute_normalized_average(df, task_metrics)

    df = add_confidence_intervals(df, scores_df_detailed, "bcp_47", task_metrics)

    # Merge with language metadata and sort
    df = pd.merge(languages, df, on="bcp_47", how="outer").sort_values(
        by="speakers", ascending=False
    )

    # Select columns dynamically
    metric_cols = [m for m in df.columns if any(tm in m for tm in task_metrics)]
    avg_ci_cols = [
        c for c in df.columns if c in ["average_ci_lower", "average_ci_upper"]
    ]

    return df[
        [
            "bcp_47",
            "language_name",
            "autonym",
            "speakers",
            "family",
            "average",
            *avg_ci_cols,
            "in_benchmark",
            *sorted(set(metric_cols)),
        ]
    ]


def make_language_tier_history(scores_df, languages, models):
    ranked_langs = languages.sort_values(by="speakers", ascending=False).reset_index(
        drop=True
    )
    tier_ranges = {"Top 1": (0, 1), "Top 2-20": (1, 20), "Top 20-200": (19, 500)}

    # Calculate model-language overall scores
    scores_df = scores_df.copy()
    scores_df["task_metric"] = scores_df["task"] + "_" + scores_df["metric"]
    pivot = scores_df.pivot_table(
        index=["model", "bcp_47"], columns="task_metric", values="score", aggfunc="mean"
    )
    for metric in task_metrics:
        pivot[metric] = pivot.get(metric, np.nan)
    pivot["proficiency_score"] = compute_normalized_average(pivot, task_metrics)
    pivot = pivot.reset_index()

    # Aggregate by tier
    tier_scores = pd.concat(
        [
            pivot[pivot["bcp_47"].isin(ranked_langs.iloc[start:end]["bcp_47"])]
            .groupby("model")["proficiency_score"]
            .mean()
            .reset_index()
            .assign(tier=tier_name)
            for tier_name, (start, end) in tier_ranges.items()
        ],
        ignore_index=True,
    )

    tier_scores = pd.merge(
        tier_scores, models, left_on="model", right_on="id", how="left"
    )
    tier_scores["creation_date"] = tier_scores["creation_date"].apply(
        lambda x: x.isoformat() if x else None
    )

    return tier_scores[
        [
            "model",
            "name",
            "provider_name",
            "creation_date",
            "size",
            "tier",
            "proficiency_score",
        ]
    ]


def make_license_history(scores_df, models):
    scores_df = scores_df.copy()
    scores_df["task_metric"] = scores_df["task"] + "_" + scores_df["metric"]

    # Pivot and compute overall score
    pivot = scores_df.pivot_table(
        index="model", columns="task_metric", values="score", aggfunc="mean"
    )
    for metric in task_metrics:
        pivot[metric] = pivot.get(metric, np.nan)
    pivot["proficiency_score"] = compute_normalized_average(pivot, task_metrics)

    # Merge and classify
    df = pd.merge(
        pivot.reset_index(), models, left_on="model", right_on="id", how="left"
    )
    df["license_type"] = df["type"].apply(
        lambda x: "Open-source" if x == "open-source" else "Commercial"
    )
    df["creation_date"] = df["creation_date"].apply(
        lambda x: x.isoformat() if x else None
    )

    return df[
        [
            "model",
            "name",
            "provider_name",
            "creation_date",
            "size",
            "license_type",
            "proficiency_score",
        ]
    ]


app = FastAPI()

app.add_middleware(CORSMiddleware, allow_origins=["*"])
app.add_middleware(GZipMiddleware, minimum_size=1000)


def serialize(df):
    return df.replace({np.nan: None}).to_dict(orient="records")


@app.post("/api/data")
async def data(request: Request):
    body = await request.body()
    data = json.loads(body)
    selected_languages = data.get("selectedLanguages", {})

    # Identify which metrics have machine translations available
    machine_translated_metrics = {
        f"{row['task']}_{row['metric']}"
        for _, row in scores.iterrows()
        if row["origin"] == "machine"
    }

    # Filter by selected languages if provided
    df = (
        scores[scores["bcp_47"].isin(lang["bcp_47"] for lang in selected_languages)]
        if selected_languages
        else scores
    )
    df_detailed = (
        scores_detailed[
            scores_detailed["bcp_47"].isin(
                lang["bcp_47"] for lang in selected_languages
            )
        ]
        if selected_languages
        else scores_detailed
    )

    if len(df) == 0:
        model_table = pd.DataFrame()
        countries = pd.DataFrame()
    else:
        model_table = make_model_table(df, models, df_detailed)
        countries = make_country_table(make_language_table(df, languages, df_detailed))

    language_table = make_language_table(scores, languages, scores_detailed)
    language_tier_history = make_language_tier_history(scores, languages, models)
    license_history = make_license_history(scores, models)
    datasets_df = pd.read_json("data/datasets.json")

    return JSONResponse(
        content={
            "model_table": serialize(model_table),
            "language_table": serialize(language_table),
            "dataset_table": serialize(datasets_df),
            "countries": serialize(countries),
            "machine_translated_metrics": list(machine_translated_metrics),
            "language_tier_history": serialize(language_tier_history),
            "license_history": serialize(license_history),
        }
    )


# Only serve static files if build directory exists
if os.path.exists("frontend/build"):
    app.mount("/", StaticFiles(directory="frontend/build", html=True), name="frontend")

if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=int(os.environ.get("PORT", 8000)))