Spaces:
Running
Running
File size: 5,027 Bytes
98c6811 fd102e9 68a93b5 2cdada4 98c6811 2cdada4 98c6811 2cdada4 98c6811 2cdada4 98c6811 2cdada4 98c6811 2cdada4 98c6811 2cdada4 98c6811 7c06aef c790fdb fd102e9 2cdada4 fd102e9 2cdada4 fd102e9 2cdada4 fd102e9 2cdada4 fd102e9 2cdada4 fd102e9 2cdada4 fd102e9 2cdada4 fd102e9 2cdada4 fd102e9 2cdada4 fd102e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
import random
from collections import Counter, defaultdict
from langcodes import Language, standardize_tag
from rich import print
from tqdm import tqdm
import asyncio
from tqdm.asyncio import tqdm_asyncio
import os
from datasets import Dataset, load_dataset
from models import translate_google, get_google_supported_languages
from datasets_.util import _get_dataset_config_names, _load_dataset
slug_uhura_truthfulqa = "masakhane/uhura-truthfulqa"
slug_truthfulqa_autotranslated = "fair-forward/truthfulqa-autotranslated"
tags_uhura_truthfulqa = {
standardize_tag(a.split("_")[0], macro=True): a
for a in _get_dataset_config_names(slug_uhura_truthfulqa)
if a.endswith("multiple_choice")
}
tags_truthfulqa_autotranslated = {
standardize_tag(a, macro=True): a
for a in _get_dataset_config_names(slug_truthfulqa_autotranslated)
}
tags_truthfulqa_autotranslated = {}
def add_choices(row):
row["choices"] = row["mc1_targets"]["choices"]
row["labels"] = row["mc1_targets"]["labels"]
return row
async def load_truthfulqa(language_bcp_47, nr):
if language_bcp_47 in tags_uhura_truthfulqa.keys():
ds = _load_dataset(
slug_uhura_truthfulqa, tags_uhura_truthfulqa[language_bcp_47]
)
ds = ds.map(add_choices)
task = ds["test"][nr]
# Ensure there is a correct answer before returning the task
if 1 not in task["labels"]:
return None, None, None
return "masakhane/uhura-truthfulqa", task, "human"
# TODO check quality/completeness of autotranslated dataset
# elif language_bcp_47 in tags_truthfulqa_autotranslated.keys():
# # Load from auto-translated dataset (same samples as translation)
# ds = _load_dataset(slug_truthfulqa_autotranslated, language_bcp_47)
# test_split = ds["test"] if "test" in ds else ds
# task = test_split[nr]
# # Ensure there is a correct answer before returning the task
# if 1 not in task.get("labels", []):
# return None, None, None
# return slug_truthfulqa_autotranslated, task, "machine"
# TODO: add Okapi, TruthfulQA-X @Jonas
else:
return None, None, None
def translate_truthfulqa(languages):
human_translated = [*tags_uhura_truthfulqa.keys()]
untranslated = [
lang
for lang in languages["bcp_47"].values[:150]
if lang not in human_translated and lang in get_google_supported_languages()
]
n_samples = 20
# Set fixed seed for consistent sample selection across all languages
random.seed(42)
slug = "fair-forward/truthfulqa-autotranslated"
for lang in tqdm(untranslated):
# check if already exists on hub
try:
ds_lang = load_dataset(slug, lang)
except (ValueError, Exception):
print(f"Translating {lang}...")
for split in ["train", "test"]:
ds = _load_dataset(
slug_uhura_truthfulqa, tags_uhura_truthfulqa["en"], split=split
)
samples = []
if split == "train":
samples.extend(ds)
else:
# Use the same 20 samples that the evaluation pipeline uses (indices 0-19)
for i in range(min(n_samples, len(ds))):
task = ds[i]
samples.append(task)
# Translate questions
questions_tr = [
translate_google(s["question"], "en", lang) for s in samples
]
questions_tr = asyncio.run(tqdm_asyncio.gather(*questions_tr))
# Translate choices for each sample
all_choices_tr = []
all_labels = []
for s in samples:
# Get choices from mc1_targets
choices = s["mc1_targets"]["choices"]
labels = s["mc1_targets"]["labels"]
# Translate choices
choices_tr = [
translate_google(choice, "en", lang) for choice in choices
]
choices_tr = asyncio.run(tqdm_asyncio.gather(*choices_tr))
all_choices_tr.append(choices_tr)
all_labels.append(labels)
ds_lang = Dataset.from_dict(
{
"question": questions_tr,
"choices": all_choices_tr,
"labels": all_labels,
}
)
ds_lang.push_to_hub(
slug,
split=split,
config_name=lang,
token=os.getenv("HUGGINGFACE_ACCESS_TOKEN"),
)
ds_lang.to_json(
f"data/translations/truthfulqa/{lang}_{split}.json",
lines=False,
force_ascii=False,
indent=2,
)
|