File size: 5,027 Bytes
98c6811
 
 
 
 
fd102e9
 
 
 
 
68a93b5
2cdada4
98c6811
 
 
 
2cdada4
 
98c6811
2cdada4
 
98c6811
 
 
2cdada4
 
 
 
 
 
98c6811
 
 
 
 
 
 
2cdada4
98c6811
2cdada4
 
 
98c6811
 
2cdada4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98c6811
7c06aef
 
c790fdb
fd102e9
 
 
 
2cdada4
 
fd102e9
2cdada4
 
 
 
fd102e9
 
 
 
 
 
 
 
 
2cdada4
 
 
fd102e9
 
 
 
2cdada4
 
fd102e9
 
2cdada4
 
fd102e9
 
 
 
2cdada4
 
 
 
 
fd102e9
2cdada4
 
 
 
 
 
 
 
 
 
 
 
fd102e9
 
 
 
2cdada4
 
fd102e9
 
 
 
 
 
 
 
 
2cdada4
fd102e9
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import random
from collections import Counter, defaultdict

from langcodes import Language, standardize_tag
from rich import print
from tqdm import tqdm
import asyncio
from tqdm.asyncio import tqdm_asyncio
import os

from datasets import Dataset, load_dataset
from models import translate_google, get_google_supported_languages

from datasets_.util import _get_dataset_config_names, _load_dataset

slug_uhura_truthfulqa = "masakhane/uhura-truthfulqa"
slug_truthfulqa_autotranslated = "fair-forward/truthfulqa-autotranslated"

tags_uhura_truthfulqa = {
    standardize_tag(a.split("_")[0], macro=True): a
    for a in _get_dataset_config_names(slug_uhura_truthfulqa)
    if a.endswith("multiple_choice")
}

tags_truthfulqa_autotranslated = {
    standardize_tag(a, macro=True): a
    for a in _get_dataset_config_names(slug_truthfulqa_autotranslated)
}
tags_truthfulqa_autotranslated = {}


def add_choices(row):
    row["choices"] = row["mc1_targets"]["choices"]
    row["labels"] = row["mc1_targets"]["labels"]
    return row


async def load_truthfulqa(language_bcp_47, nr):
    if language_bcp_47 in tags_uhura_truthfulqa.keys():
        ds = _load_dataset(
            slug_uhura_truthfulqa, tags_uhura_truthfulqa[language_bcp_47]
        )
        ds = ds.map(add_choices)
        task = ds["test"][nr]
        # Ensure there is a correct answer before returning the task
        if 1 not in task["labels"]:
            return None, None, None
        return "masakhane/uhura-truthfulqa", task, "human"
    # TODO check quality/completeness of autotranslated dataset
    # elif language_bcp_47 in tags_truthfulqa_autotranslated.keys():
    #     # Load from auto-translated dataset (same samples as translation)
    #     ds = _load_dataset(slug_truthfulqa_autotranslated, language_bcp_47)
    #     test_split = ds["test"] if "test" in ds else ds
    #     task = test_split[nr]
    #     # Ensure there is a correct answer before returning the task
    #     if 1 not in task.get("labels", []):
    #         return None, None, None
    #     return slug_truthfulqa_autotranslated, task, "machine"
    # TODO: add Okapi, TruthfulQA-X @Jonas
    else:
        return None, None, None


def translate_truthfulqa(languages):
    human_translated = [*tags_uhura_truthfulqa.keys()]
    untranslated = [
        lang
        for lang in languages["bcp_47"].values[:150]
        if lang not in human_translated and lang in get_google_supported_languages()
    ]
    n_samples = 20

    # Set fixed seed for consistent sample selection across all languages
    random.seed(42)

    slug = "fair-forward/truthfulqa-autotranslated"
    for lang in tqdm(untranslated):
        # check if already exists on hub
        try:
            ds_lang = load_dataset(slug, lang)
        except (ValueError, Exception):
            print(f"Translating {lang}...")
            for split in ["train", "test"]:
                ds = _load_dataset(
                    slug_uhura_truthfulqa, tags_uhura_truthfulqa["en"], split=split
                )
                samples = []
                if split == "train":
                    samples.extend(ds)
                else:
                    # Use the same 20 samples that the evaluation pipeline uses (indices 0-19)
                    for i in range(min(n_samples, len(ds))):
                        task = ds[i]
                        samples.append(task)

                # Translate questions
                questions_tr = [
                    translate_google(s["question"], "en", lang) for s in samples
                ]
                questions_tr = asyncio.run(tqdm_asyncio.gather(*questions_tr))

                # Translate choices for each sample
                all_choices_tr = []
                all_labels = []

                for s in samples:
                    # Get choices from mc1_targets
                    choices = s["mc1_targets"]["choices"]
                    labels = s["mc1_targets"]["labels"]

                    # Translate choices
                    choices_tr = [
                        translate_google(choice, "en", lang) for choice in choices
                    ]
                    choices_tr = asyncio.run(tqdm_asyncio.gather(*choices_tr))

                    all_choices_tr.append(choices_tr)
                    all_labels.append(labels)

                ds_lang = Dataset.from_dict(
                    {
                        "question": questions_tr,
                        "choices": all_choices_tr,
                        "labels": all_labels,
                    }
                )
                ds_lang.push_to_hub(
                    slug,
                    split=split,
                    config_name=lang,
                    token=os.getenv("HUGGINGFACE_ACCESS_TOKEN"),
                )
                ds_lang.to_json(
                    f"data/translations/truthfulqa/{lang}_{split}.json",
                    lines=False,
                    force_ascii=False,
                    indent=2,
                )