File size: 6,543 Bytes
2c21cf7
4d13673
9002fc2
2c21cf7
 
 
2cdada4
68a93b5
2cdada4
d91b022
2c21cf7
 
 
 
d91b022
2cdada4
 
 
4d13673
9002fc2
eb1696c
 
 
9002fc2
9c2c019
 
 
913253a
9c2c019
b0aa389
2cdada4
549360a
9c2c019
eb1696c
9002fc2
941d5c5
 
 
 
 
 
 
 
2cdada4
 
 
941d5c5
 
 
 
 
2cdada4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0d1624
2cdada4
 
 
 
53d2039
 
 
2cdada4
98c6811
2cdada4
 
 
 
 
eb1696c
 
 
2cdada4
 
 
 
 
 
 
eb1696c
 
c790fdb
 
 
 
 
 
 
 
 
 
 
2cdada4
eb1696c
 
 
 
 
2cdada4
 
 
 
 
 
 
4e8cb1a
2cdada4
 
 
 
 
 
 
 
 
53d2039
 
 
2cdada4
98c6811
eb1696c
 
2cdada4
 
 
 
 
eb1696c
 
c790fdb
 
 
 
 
 
 
2cdada4
eb1696c
 
 
 
2c21cf7
 
 
 
 
 
 
 
 
 
 
 
d91b022
 
 
 
2cdada4
 
 
 
 
 
 
 
 
 
 
32d50b0
 
 
 
 
 
2cdada4
 
 
 
 
2c21cf7
 
 
 
2cdada4
 
2c21cf7
9002fc2
2cdada4
ebaf279
 
2c21cf7
 
4d13673
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import json
import os

import numpy as np
import pandas as pd
import uvicorn

from countries import make_country_table
from datasets_.util import load
from fastapi import FastAPI, Request
from fastapi.middleware.cors import CORSMiddleware
from fastapi.middleware.gzip import GZipMiddleware
from fastapi.responses import JSONResponse
from fastapi.staticfiles import StaticFiles

scores = load("results")
languages = load("languages")
models = load("models")


def mean(lst):
    return sum(lst) / len(lst) if lst else None


task_metrics = [
    "translation_from_bleu",
    "translation_to_bleu",
    "classification_accuracy",
    "mmlu_accuracy",
    "arc_accuracy",
    "truthfulqa_accuracy",
    "mgsm_accuracy",
]


def compute_normalized_average(df, metrics):
    """Compute average of min-max normalized metric columns."""
    normalized_df = df[metrics].copy()
    for col in metrics:
        if col in normalized_df.columns:
            col_min = normalized_df[col].min()
            col_max = normalized_df[col].max()
            if col_max > col_min:  # Avoid division by zero
                normalized_df[col] = (normalized_df[col] - col_min) / (
                    col_max - col_min
                )
            else:
                normalized_df[col] = 0  # If all values are the same, set to 0
    return normalized_df.mean(axis=1, skipna=False)


def make_model_table(scores_df, models):
    scores_df = scores_df.copy()
    # Create a combined task_metric for origin
    scores_df["task_metric_origin"] = (
        scores_df["task"] + "_" + scores_df["metric"] + "_" + scores_df["origin"]
    )

    # Pivot to get scores for each origin-specific metric
    scores_pivot = scores_df.pivot_table(
        index="model",
        columns="task_metric_origin",
        values="score",
        aggfunc="mean",
    )

    # Create the regular task_metric for the main average calculation
    scores_df["task_metric"] = scores_df["task"] + "_" + scores_df["metric"]
    main_pivot = scores_df.pivot_table(
        index="model", columns="task_metric", values="score", aggfunc="mean"
    )

    # Merge the two pivots
    df = pd.merge(main_pivot, scores_pivot, on="model", how="outer")

    for metric in task_metrics:
        if metric not in df.columns:
            df[metric] = np.nan

    df["average"] = compute_normalized_average(df, task_metrics)

    # Add flag if any machine-origin data was used
    machine_presence = scores_df[scores_df["origin"] == "machine"].groupby(["model", "task_metric"]).size()
    for metric in task_metrics:
        df[f"{metric}_contains_machine"] = df.index.map(lambda m: (m, metric) in machine_presence.index)
    df = df.sort_values(by="average", ascending=False).reset_index()
    df = pd.merge(df, models, left_on="model", right_on="id", how="left")
    df["rank"] = df.index + 1

    # Dynamically find all metric columns to include
    final_cols = df.columns
    metric_cols = [m for m in final_cols if any(tm in m for tm in task_metrics)]

    df["creation_date"] = df["creation_date"].apply(lambda x: x.isoformat() if x else None)

    df = df[
        [
            "rank",
            "model",
            "name",
            "provider_name",
            "hf_id",
            "creation_date",
            "size",
            "type",
            "license",
            "cost",
            "average",
            *sorted(list(set(metric_cols))),
        ]
    ]
    return df


def make_language_table(scores_df, languages):
    scores_df = scores_df.copy()
    scores_df["task_metric"] = scores_df["task"] + "_" + scores_df["metric"]
    
    # Pivot scores
    score_pivot = scores_df.pivot_table(
        index="bcp_47", columns="task_metric", values="score", aggfunc="mean"
    )
    
    # Pivot origins (first origin since each task+lang combo has only one)
    origin_pivot = scores_df.pivot_table(
        index="bcp_47", columns="task_metric", values="origin", aggfunc="first"
    )
    origin_pivot = origin_pivot.add_suffix("_origin")
    
    df = pd.merge(score_pivot, origin_pivot, on="bcp_47", how="outer")
    
    for metric in task_metrics:
        if metric not in df.columns:
            df[metric] = np.nan

    df["average"] = compute_normalized_average(df, task_metrics)
    df = pd.merge(languages, df, on="bcp_47", how="outer")
    df = df.sort_values(by="speakers", ascending=False)

    # Dynamically find all metric columns to include
    final_cols = df.columns
    metric_cols = [m for m in final_cols if any(tm in m for tm in task_metrics)]

    df = df[
        [
            "bcp_47",
            "language_name",
            "autonym",
            "speakers",
            "family",
            "average",
            "in_benchmark",
            *sorted(list(set(metric_cols))),
        ]
    ]
    return df


app = FastAPI()

app.add_middleware(CORSMiddleware, allow_origins=["*"])
app.add_middleware(GZipMiddleware, minimum_size=1000)


def serialize(df):
    return df.replace({np.nan: None}).to_dict(orient="records")


@app.post("/api/data")
async def data(request: Request):
    body = await request.body()
    data = json.loads(body)
    selected_languages = data.get("selectedLanguages", {})
    
    # Identify which metrics have machine translations available
    machine_translated_metrics = {
        f"{row['task']}_{row['metric']}" 
        for _, row in scores.iterrows() 
        if row["origin"] == "machine"
    }

    # Filter by selected languages if provided
    df = scores[scores["bcp_47"].isin(lang["bcp_47"] for lang in selected_languages)] if selected_languages else scores
    
    if len(df) == 0:
        model_table = pd.DataFrame()
        countries = pd.DataFrame()
    else:
        model_table = make_model_table(df, models)
        countries = make_country_table(make_language_table(df, languages))
    
    language_table = make_language_table(scores, languages)
    datasets_df = pd.read_json("data/datasets.json")
    
    return JSONResponse(content={
        "model_table": serialize(model_table),
        "language_table": serialize(language_table),
        "dataset_table": serialize(datasets_df),
        "countries": serialize(countries),
        "machine_translated_metrics": list(machine_translated_metrics),
    })


# Only serve static files if build directory exists
if os.path.exists("frontend/build"):
    app.mount("/", StaticFiles(directory="frontend/build", html=True), name="frontend")

if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=int(os.environ.get("PORT", 8000)))