languagebench / evals /tasks.py
davidpomerenke's picture
Upload from GitHub Actions: Merge pull request #22 from datenlabor-bmz/dev
2cdada4 verified
import random
import re
from functools import partial
from textwrap import dedent
import evaluate
import sentencepiece as spm
from datasets_.arc import load_uhura_arc_easy
from datasets_.flores import flores_sentences
from datasets_.mgsm import load_mgsm, parse_number
from datasets_.mmlu import load_mmlu
from datasets_.truthfulqa import load_truthfulqa
from google.cloud import translate_v2 as translate
from langcodes import closest_supported_match
from languages import languages, script_name
from models import complete, translate_google
bleu = evaluate.load("bleu")
chrf = evaluate.load("chrf")
wer = evaluate.load("wer")
tokenizer = spm.SentencePieceProcessor(
model_file="data/spbleu/flores200_sacrebleu_tokenizer_spm.model"
)
# sample languages to translate to
target_languages = languages[languages["in_benchmark"]].sample(
frac=1, weights="speakers", replace=True, random_state=42
)
translate_client = translate.Client()
supported_languages = [l["language"] for l in translate_client.get_languages()]
async def query(model, prompt):
# this is just for sharing config across tasks
try:
response = await complete(
model=model,
messages=[{"role": "user", "content": prompt}],
temperature=0,
max_tokens=1024,
extra_body=dict(
reasoning=dict(
effort="low", # Can be "high", "medium", or "low" (OpenAI-style)
# max_tokens=1024, # Specific token limit (Anthropic-style)
# Optional: Default is false. All models support this.
exclude=True, # Set to true to exclude reasoning tokens from response
)
),
)
except Exception as e:
print(f"exception for model {model}: {e}")
return None
# remove <think>...</think> sections (it's probably an OpenRouter bug that they are included)
response = re.sub(r"<think>.*</think>", "", response).strip()
# sometimes there's also a lone <think> at the start for some reason
response = re.sub(r"<think>", "", response).strip()
return response
reasoning_template = (
"Response format:<reasoning>...</reasoning><final_answer>...</final_answer>"
)
def format_multiple_choice(item):
return dedent(f"""
{reasoning_template}
---
{item["question"]}
A: {item["choices"][0]}
B: {item["choices"][1]}
C: {item["choices"][2]}
D: {item["choices"][3]}""")
def extract_mc_response(response):
if not response:
return None
final_answer = re.search(r"\<final_answer\>(.*)\<\/final_answer\>", response)
return final_answer[1].strip() if final_answer else None
async def translate_and_evaluate(model, bcp_47, sentence_nr, mode="from"):
original_language = languages[languages["bcp_47"] == bcp_47].iloc[0]
target_language = target_languages.iloc[sentence_nr]
match mode:
case "from":
pass
case "to":
original_language, target_language = target_language, original_language
if (
flores_sentences(original_language) is None
or flores_sentences(target_language) is None
):
return []
original_sentence = flores_sentences(original_language)["text"][sentence_nr].strip()
target_sentence = flores_sentences(target_language)["text"][sentence_nr].strip()
script = script_name(target_language.flores_path.split("_")[1])
translation_prompt = f"Translate the following text to the {target_language.language_name} language; use the {script} script; reply only with the translation:\n\n{original_sentence}"
if model == "google/translate-v2":
original_language = closest_supported_match(
original_language.bcp_47, supported_languages
)
target_language = closest_supported_match(
target_language.bcp_47, supported_languages
)
if original_language == target_language:
prediction = original_sentence
elif original_language is None or target_language is None:
prediction = None
else:
prediction = await translate_google(
original_sentence, original_language, target_language
)
else:
prediction = await query(model, translation_prompt)
if prediction:
bleu_score = bleu.compute(
predictions=[prediction],
references=[target_sentence],
tokenizer=tokenizer.tokenize,
)
chrf_score = chrf.compute(
predictions=[prediction], references=[target_sentence]
)
else:
bleu_score = {"bleu": 0}
chrf_score = {"score": 0}
return [
{
"model": model,
"bcp_47": bcp_47,
"task": f"translation_{mode}",
"metric": metric,
"score": score,
"origin": "human", # FLORES+ is human-translated
"sentence_nr": sentence_nr,
"prompt": translation_prompt,
"response": prediction,
}
for metric, score in (
("bleu", bleu_score["bleu"]),
("chrf", chrf_score["score"] / 100),
)
]
async def classify_and_evaluate(model, bcp_47, nr):
language = languages[languages["bcp_47"] == bcp_47].iloc[0]
sentences = flores_sentences(language)
if sentences is None:
return []
sentences = sentences.dropna(subset=["topic"])
sentences["topic"] = sentences["topic"].str.lower()
paragraphs = (
sentences.groupby("url").agg({"text": " ".join, "topic": "first"}).reset_index()
)
top_topics = paragraphs.value_counts("topic").head(5).index
paragraphs = paragraphs[paragraphs["topic"].isin(top_topics)]
test_paragraph = paragraphs.sample(n=1, random_state=nr).iloc[0]
prompt = f"""Classify the following text into one of these topics: {", ".join(top_topics)}.
Reply with only the topic name.
Text:
{test_paragraph.text}
"""
response = await query(model, prompt)
pred = response.lower().strip() if response else ""
true = test_paragraph.topic.lower().strip()
others = [t for t in top_topics if t != true]
acc = (
int(
pred.startswith(true)
or (true in pred and not any(o in pred for o in others))
)
if pred
else 0
)
return [
{
"model": model,
"bcp_47": bcp_47,
"task": "classification",
"metric": "accuracy",
"score": acc,
"origin": "human", # FLORES+ is human-translated
"sentence_nr": nr,
"prompt": prompt,
"response": pred,
}
]
# def corrupt_sentence(sentence):
# # replace 5% of the sentence with <mask>
# mask_length = round(len(sentence) * 0.05)
# start = random.randint(0, len(sentence) - mask_length)
# end = start + mask_length
# return sentence[:start] + "<mask>" + sentence[end:]
# async def mlm_and_evaluate(model, language_bcp_47, nr):
# language = languages[languages["bcp_47"] == language_bcp_47].iloc[0]
# sentences = flores_sentences(language)
# if sentences is None:
# return []
# sentences = pd.DataFrame(sentences, columns=["text"])
# sentences["corrupt_text"] = sentences["text"].apply(corrupt_sentence)
# examples = sentences.sample(n=10, random_state=42)
# test_sentences = sentences[~sentences["text"].isin(examples["text"])].sample(
# frac=1, random_state=42
# )
# test_sentence = test_sentences.iloc[nr]
# messages = []
# for example in examples.itertuples():
# messages += [
# {"role": "user", "content": example.corrupt_text},
# {"role": "assistant", "content": example.text},
# ]
# prediction = await complete(
# model=model,
# messages=[
# *messages,
# {
# "role": "user",
# "content": test_sentence.corrupt_text,
# },
# ],
# temperature=0,
# max_tokens=1024,
# )
# chrf_score = chrf.compute(predictions=[prediction], references=[test_sentence.text])
# return [
# {
# "model": model,
# "bcp_47": language["bcp_47"],
# "task": "language_modeling",
# "metric": "chrf",
# "score": chrf_score["score"] / 100,
# "sentence_nr": nr,
# }
# ]
async def mmlu_and_evaluate(model, language_bcp_47, nr):
ds_name, task, origin = await load_mmlu(language_bcp_47, nr)
if not task:
return []
prompt = f"""Solve the following multiple choice question. Reason step-by-step and then write the final answer as a single letter.\n\n{format_multiple_choice(task)}"""
response = await query(model, prompt)
final_response = extract_mc_response(response)
acc = int(final_response == task["answer"]) if final_response else 0
return [
{
"model": model,
"bcp_47": language_bcp_47,
"task": "mmlu",
"metric": "accuracy",
"score": acc,
"origin": origin,
"sentence_nr": nr,
"prompt": prompt,
"response": response,
}
]
async def arc_and_evaluate(model, language_bcp_47, nr):
ds_name, task, origin = load_uhura_arc_easy(language_bcp_47, nr)
if not task:
return []
prompt = f"Solve the following multiple choice question. Reason step-by-step and then write the final answer as a single letter.\n\n{format_multiple_choice(task)}"
response = await query(model, prompt)
final_response = extract_mc_response(response)
acc = int(final_response == task["answer"]) if final_response else 0
return [
{
"model": model,
"bcp_47": language_bcp_47,
"task": "arc",
"metric": "accuracy",
"score": acc,
"origin": origin,
"sentence_nr": nr,
"prompt": prompt,
"response": response,
}
]
letters = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
def shuffle_choices_and_labels(item):
indices = list(range(len(item["choices"])))
random.shuffle(indices)
item["choices"] = [item["choices"][i] for i in indices]
item["labels"] = [item["labels"][i] for i in indices]
return item
def format_multiple_choice_truthfulqa(item):
text = item["question"] + "\n\n"
for i, choice in enumerate(item["choices"]):
text += f"{letters[i]}: {choice}\n"
return text
async def truthfulqa_and_evaluate(model, language_bcp_47, nr):
ds_name, task, origin = await load_truthfulqa(language_bcp_47, nr)
if not task:
return []
correct_choice_index = task["labels"].index(1)
answer = letters[correct_choice_index]
prompt = f"""Answer the following multiple choice question. Reason step-by-step and then write the final answer as a single letter.\n\n{format_multiple_choice_truthfulqa(task)}"""
response = await query(model, prompt)
final_response = extract_mc_response(response)
acc = int(final_response.upper() == answer) if final_response else 0
return [
{
"model": model,
"bcp_47": language_bcp_47,
"task": "truthfulqa",
"metric": "accuracy",
"score": acc,
"origin": origin,
"sentence_nr": nr,
"prompt": prompt,
"response": response,
}
]
async def mgsm_and_evaluate(model, language_bcp_47, nr):
ds_slug, question, origin = load_mgsm(language_bcp_47, nr)
if not question:
return []
prompt = dedent(f"""
Solve the following math problem. Reason step-by-step and then write the final answer as a single number.
{reasoning_template}
---
{question["question"]}""").strip()
response = await query(model, prompt)
number = extract_mc_response(response)
acc = (
int(parse_number(number) == parse_number(question["answer_number"]))
if number
else 0
)
return [
{
"model": model,
"bcp_47": language_bcp_47,
"task": "mgsm",
"metric": "accuracy",
"score": acc,
"origin": origin,
"sentence_nr": nr,
"prompt": prompt,
"response": response,
}
]
# async def transcribe_and_evaluate(model, language_bcp_47, nr):
# language = languages[languages["bcp_47"] == language_bcp_47].iloc[0]
# fleurs = pd.read_csv(
# f"data/fleurs/{language.fleurs_tag}/dev.tsv",
# sep="\t",
# names=[
# "id",
# "fname",
# "raw_transcription",
# "transcription",
# "words",
# "id2",
# "gender",
# ],
# )
# item = fleurs.iloc[nr]
# path = f"data/fleurs/{language.fleurs_tag}/audio/dev/{item.fname}"
# pred = await transcribe(path, model=model)
# wer_score = wer.compute(predictions=[pred], references=[item.transcription])
# return [
# {
# "model": model,
# "bcp_47": language["bcp_47"],
# "task": "asr",
# "metric": "wer",
# "score": wer_score,
# "sentence_nr": nr,
# }
# ]
tasks = {
"translation_from": partial(translate_and_evaluate, mode="from"),
"translation_to": partial(translate_and_evaluate, mode="to"),
"classification": classify_and_evaluate,
"mmlu": mmlu_and_evaluate,
"arc": arc_and_evaluate,
"truthfulqa": truthfulqa_and_evaluate,
"mgsm": mgsm_and_evaluate,
}